-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmodel.py
900 lines (762 loc) · 35.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
import numpy as np
import math
import os
from torch.utils.tensorboard import SummaryWriter
from utils import Profile
class NESA(nn.Module):
def __init__(self, config, widx2vec, idx2dur=None, class_weight=None,
idx=None):
super(NESA, self).__init__()
self.config = config
use_cuda = self.config.yes_cuda > 0 and torch.cuda.is_available()
self.device = torch.device("cuda" if use_cuda else "cpu")
self.n_classes = config.slot_size // config.class_div
self.n_day_slots = self.n_classes // 7
# embedding layers
self.char_embed = nn.Embedding(config.char_vocab_size,
config.char_embed_dim,
padding_idx=0)
self.word_embed = nn.Embedding(config.word_vocab_size,
config.word_embed_dim,
padding_idx=0)
if not config.no_intention or not config.no_context:
self.user_embed = nn.Embedding(config.user_size,
config.user_embed_dim)
if not config.no_intention:
self.dur_embed = nn.Embedding(config.dur_size, config.dur_embed_dim)
if config.use_duration_scala > 0:
assert idx2dur is not None
self.dur_embed = nn.Embedding(config.dur_size, 1)
didx2vec = np.zeros((config.dur_size, 1))
for dur_idx in idx2dur:
# zero to one
didx2vec[dur_idx] = min(1., idx2dur[dur_idx] / 720.)
self.dur_embed.weight.data.copy_(torch.from_numpy(didx2vec))
self.dur_embed.weight.requires_grad = False
if not config.no_context:
self.slot_embed = nn.Embedding(self.n_classes,
config.slot_embed_dim)
self.emtpy_long = torch.LongTensor([]).to(self.device)
# dimensions according to settings
self.num_directions = config.num_directions
self.t_rnn_idim = config.word_embed_dim + sum(config.tc_conv_fn)
self.st_rnn_idim = config.word_embed_dim + sum(config.tc_conv_fn)
self.sm_conv1_idim = config.user_embed_dim + config.slot_embed_dim
if not config.no_context and not config.no_context_title:
self.sm_conv1_idim += config.st_rnn_hdim * self.num_directions
self.empty_st_rnn_output = \
torch.zeros(1, self.config.st_rnn_hdim * self.num_directions) \
.to(self.device)
self.sm_conv2_idim = sum(
config.sm_conv_fn[:len(config.sm_conv_fn) // 2])
self.it_idim = config.user_embed_dim + config.dur_embed_dim
if not config.no_title:
self.it_idim += config.t_rnn_hdim * self.num_directions
self.mt_idim = 0
if not config.no_intention:
self.mt_idim += self.it_idim
else:
if not config.no_title:
self.mt_idim += config.t_rnn_hdim * self.num_directions
if not config.no_context:
self.context_odim = sum(
config.sm_conv_fn[len(config.sm_conv_fn) // 2:])
self.mt_idim += config.sm_day_num * config.sm_slot_num
self.mt_idim += self.context_odim
# convolution layers
self.tc_conv = nn.ModuleList(
[nn.Conv2d(config.char_embed_dim, config.tc_conv_fn[i],
(config.tc_conv_fh[i], config.tc_conv_fw[i]),
stride=1) for i in range(len(config.tc_conv_fn))])
self.tc_conv_bn = nn.ModuleList(
[nn.BatchNorm2d(num_tc_conv_f)
for num_tc_conv_f in config.tc_conv_fn])
self.tc_conv_min_dim = len(config.tc_conv_fn) + 1
if not config.no_context:
self.sm_conv1 = nn.ModuleList([nn.Conv2d(
self.sm_conv1_idim, config.sm_conv_fn[i],
(config.sm_conv_fh[i], config.sm_conv_fw[i]),
stride=1, padding=config.sm_conv_pd[i])
for i in range(0, len(config.sm_conv_fn) // 2)])
self.sm_mp1 = nn.MaxPool2d(2)
self.sm_conv1_bn = nn.BatchNorm2d(self.sm_conv2_idim)
self.sm_conv2 = nn.ModuleList([nn.Conv2d(
self.sm_conv2_idim,
config.sm_conv_fn[i + len(config.sm_conv_fn) // 2],
(config.sm_conv_fh[i], config.sm_conv_fw[i]),
stride=1, padding=config.sm_conv_pd[i])
for i in range(len(config.sm_conv_fn) // 2)])
self.sm_mp2 = nn.MaxPool2d(2)
self.sm_conv2_bn = nn.BatchNorm2d(self.context_odim)
# rnn layers
self.batch_first = False
self.bidirectional = config.num_directions == 2
if not config.no_title:
self.t_rnn = nn.LSTM(self.t_rnn_idim, config.t_rnn_hdim,
config.t_rnn_ln,
dropout=config.t_rnn_dr,
batch_first=self.batch_first,
bidirectional=self.bidirectional)
if not config.no_context and not config.no_context_title:
self.st_rnn = nn.LSTM(self.st_rnn_idim, config.st_rnn_hdim,
config.st_rnn_ln,
dropout=config.st_rnn_dr,
batch_first=self.batch_first,
bidirectional=self.bidirectional)
# linear layers
if not config.no_intention:
self.it_nonl = nn.Linear(self.it_idim, self.it_idim)
self.it_gate = nn.Linear(self.it_idim, self.it_idim)
self.mt_nonl = nn.Linear(self.mt_idim, self.mt_idim)
self.mt_gate = nn.Linear(self.mt_idim, self.mt_idim)
self.output_fc1 = nn.Linear(self.mt_idim,
config.sm_day_num * config.sm_slot_num)
# initialization
self.init_word_embed(widx2vec,
requires_grad=config.word_embed_req_grad > 0)
self.init_convs()
self.init_linears()
self.params = self.model_params(debug=False)
self.optimizer = optim.Adam(self.params, lr=config.lr,
weight_decay=config.wd,
amsgrad=True)
self.scheduler = \
optim.lr_scheduler.ReduceLROnPlateau(self.optimizer,
factor=0.5,
patience=1)
# https://discuss.pytorch.org/t/loss-weighting-imbalanced-data/11698
self.criterion = nn.CrossEntropyLoss(weight=class_weight)
if config.summary:
summary_path = 'runs/' + config.model_name + \
('_%d' % idx if idx is not None else '')
self.summary_writer = SummaryWriter(log_dir=summary_path)
def init_word_embed(self, widx2vec, requires_grad=False):
self.word_embed.weight.data.copy_(torch.from_numpy(np.array(widx2vec)))
self.word_embed.weight.requires_grad = requires_grad
def init_convs(self):
def init_conv_list(conv_list):
for conv in conv_list:
# https://discuss.pytorch.org/t/weight-initilzation/157/9
nn.init.xavier_uniform_(conv.weight.data)
nn.init.uniform_(conv.bias.data)
init_conv_list(self.tc_conv)
if not self.config.no_context:
init_conv_list(self.sm_conv1)
init_conv_list(self.sm_conv2)
def init_linears(self, init='xavier_uniform'):
# https://github.com/pytorch/pytorch/blob/v0.3.1/torch/nn/modules/linear.py#L48
def linear_init_uniform(linear, stdv_power=1.):
stdv = 1. / math.sqrt(linear.weight.size(1))
stdv *= stdv_power
nn.init.uniform(linear.weight, -stdv, stdv)
if linear.bias is not None:
nn.init.uniform(linear.bias, -stdv, stdv)
if 'xavier_uniform' == init:
if not self.config.no_intention:
nn.init.xavier_uniform_(self.it_nonl.weight,
gain=nn.init.calculate_gain('relu'))
nn.init.uniform_(self.it_nonl.bias)
nn.init.xavier_uniform_(self.it_gate.weight, gain=1)
nn.init.uniform_(self.it_gate.bias)
nn.init.xavier_uniform_(self.mt_nonl.weight,
gain=nn.init.calculate_gain('relu'))
nn.init.uniform_(self.mt_nonl.bias)
nn.init.xavier_uniform_(self.mt_gate.weight, gain=1)
nn.init.uniform_(self.mt_gate.bias)
nn.init.xavier_uniform_(self.output_fc1.weight,
gain=nn.init.calculate_gain('relu'))
nn.init.uniform_(self.output_fc1.bias)
elif 'uniform' == init:
stdv_pow = 0.5
if not self.config.no_intention:
linear_init_uniform(self.it_nonl, stdv_power=stdv_pow)
linear_init_uniform(self.it_gate, stdv_power=stdv_pow)
linear_init_uniform(self.mt_nonl, stdv_power=stdv_pow)
linear_init_uniform(self.mt_gate, stdv_power=stdv_pow)
linear_init_uniform(self.output_fc1, stdv_power=stdv_pow)
def init_rnn_h(self, batch_size, rnn_ln, hdim):
h_0 = torch.zeros(rnn_ln * self.num_directions,
batch_size,
hdim).to(self.device)
c_0 = torch.zeros(rnn_ln * self.num_directions,
batch_size,
hdim).to(self.device)
return h_0, c_0
def model_params(self, debug=True):
print('model parameters: ', end='')
params = list()
total_size = 0
def multiply_iter(p_list):
out = 1
for _p in p_list:
out *= _p
return out
for p in self.parameters():
if p.requires_grad:
params.append(p)
total_size += multiply_iter(p.size())
if debug:
print(p.requires_grad, p.size())
print('%s' % '{:,}'.format(total_size))
return params
def get_rnn_out(self, batch_size, batch_max_seqlen, tl,
packed_input, idx_unsort,
rnn, rnn_hdim, rnn_out_dr, rnn_ln):
assert idx_unsort is not None
# rnn
rnn_out, (ht, ct) = rnn(packed_input,
self.init_rnn_h(batch_size, rnn_ln, rnn_hdim))
# hidden state could be used for single layer rnn
if rnn.num_layers == 1:
ht = ht[:, idx_unsort]
if rnn.bidirectional:
ht = torch.cat((ht[0], ht[1]), dim=1)
else:
ht = ht[0]
return F.dropout(ht, p=rnn_out_dr, training=self.training)
# unpack output
# (L, B, rnn_hidden_size * num_directions)
rnn_out, _ = pad_packed_sequence(rnn_out,
batch_first=self.batch_first)
# transpose
# (B, L, rnn_hidden_size * num_directions)
rnn_out = rnn_out.transpose(0, 1).contiguous()
# unsort
# rnn_out should be batch_first
rnn_out = rnn_out[idx_unsort]
tl = tl[idx_unsort]
# flatten
# (B * L, rnn_hidden_size * num_directions)
rnn_out = \
rnn_out.view(-1, rnn_hdim * self.num_directions).to(self.device)
# select timestep by length
fw_idxes = \
torch.arange(0, batch_size, dtype=torch.long) \
.to(self.device) * batch_max_seqlen + tl - 1
selected_fw = rnn_out[fw_idxes]
selected_fw = selected_fw[:, :rnn_hdim]
# https://github.com/pytorch/pytorch/issues/3587#issuecomment-348340401
# https://github.com/pytorch/pytorch/issues/3587#issuecomment-354284160
if rnn.bidirectional:
bw_idxes = \
torch.arange(0, batch_size, dtype=torch.long) \
.to(self.device) * batch_max_seqlen
selected_bw = rnn_out[bw_idxes]
selected_bw = selected_bw[:, rnn_hdim:]
return F.dropout(torch.cat((selected_fw, selected_bw), 1),
p=rnn_out_dr,
training=self.training)
else:
return F.dropout(selected_fw,
p=rnn_out_dr,
training=self.training)
@Profile(__name__)
def title_layer(self, tc, tw, tl, mode='t'):
# it's context size if mode='st'
tl = torch.LongTensor(tl).to(self.device)
batch_size = tl.size(0) # B
batch_max_seqlen = tl.max() # L
batch_max_wordlen = -1
for tc_words in tc:
for tc_word in tc_words:
word_chars = len(tc_word)
if batch_max_wordlen < word_chars:
batch_max_wordlen = word_chars
assert batch_max_wordlen > -1
# force padding for tc_conv
if batch_max_wordlen < self.tc_conv_min_dim:
batch_max_wordlen = self.tc_conv_min_dim
# assure that dataset.char2idx[self.PAD] is 0
# (B, L (batch_max_seqlen), max_wordlen)
tc_tensor = torch.zeros((batch_size,
batch_max_seqlen,
batch_max_wordlen), dtype=torch.long) \
.to(self.device)
for b_idx, (seq, seqlen) in enumerate(zip(tc, tl)):
for w_idx in range(seqlen):
word_chars = seq[w_idx]
tc_tensor[b_idx, w_idx, :len(word_chars)] = \
torch.LongTensor(word_chars).to(self.device)
# assure that dataset.word2idx[self.PAD] is 0
# (B, L (batch_max_seqlen))
tw_tensor = torch.zeros((batch_size,
batch_max_seqlen), dtype=torch.long) \
.to(self.device)
for idx, (seq, seqlen) in enumerate(zip(tw, tl)):
tw_tensor[idx, :seqlen] = \
torch.LongTensor(seq[:seqlen]).to(self.device)
# sort tc_tensor and tw_tensor by seq len
tl, perm_idxes = tl.sort(dim=0, descending=True)
tc_tensor = tc_tensor[perm_idxes]
tw_tensor = tw_tensor[perm_idxes]
# to be used after RNN to restore the order
_, idx_unsort = torch.sort(perm_idxes, dim=0, descending=False)
# character embedding for title character
# (B * L (batch_max_seqlen), max_wordlen, char_embed_dim)
tc_embed = self.char_embed(tc_tensor.view(-1, batch_max_wordlen))
# tc_embed = torch.zeros(tc_embed.size()).to(self.device)
if self.config.char_dr > 0:
tc_embed = F.dropout(tc_embed,
p=self.config.char_dr, training=self.training)
# unsqueeze dim 2 and transpose
# (B * L (batch_max_seqlen), char_embed_dim, 1, max_wordlen)
tc_embed = torch.transpose(torch.unsqueeze(tc_embed, 2), 1, 3)
# tc conv
# (N, channels, height, width)
conv_result = list()
for i, (conv, conv_bn) in enumerate(zip(self.tc_conv, self.tc_conv_bn)):
tc_conv = conv(tc_embed)
tc_mp = torch.max(torch.tanh(conv_bn(tc_conv)), 3)[0]
# (B, L, tc_conv_fn[i])
tc_mp = tc_mp.view(-1, batch_max_seqlen, tc_mp.size(1))
conv_result.append(tc_mp)
# (B, L, sum(tc_conv_fn))
conv_result = torch.cat(conv_result, dim=2)
# word embedding for title
# (B, L, word_embed_dim)
tw_embed = self.word_embed(tw_tensor)
# # ablation: word embedding
# tw_embed = torch.zeros(tw_embed.size()).to(self.device)
if self.config.word_dr > 0:
tw_embed = F.dropout(tw_embed,
p=self.config.word_dr,
training=self.training)
if not self.batch_first:
# (L, B, sum(tc_conv_fn))
conv_result = conv_result.transpose(0, 1)
# (L, B, word_embed_dim)
tw_embed = tw_embed.transpose(0, 1)
# concat title character conv result and title word embedding
# (L, B, sum(tc_conv_fn) + word_embed_dim)
rnn_input = torch.cat((conv_result, tw_embed), 2)
# pack, response for variable length batch
packed_input = \
pack_padded_sequence(rnn_input, tl, batch_first=self.batch_first)
# for input title
if mode == 't':
assert not self.config.no_title
return self.get_rnn_out(batch_size, batch_max_seqlen, tl,
packed_input, idx_unsort,
self.t_rnn,
self.config.t_rnn_hdim,
self.config.t_rnn_out_dr,
self.config.t_rnn_ln)
# for context title
elif mode == 'st':
assert not self.config.no_context \
and not self.config.no_context_title
return self.get_rnn_out(batch_size, batch_max_seqlen, tl,
packed_input, idx_unsort,
self.st_rnn,
self.config.st_rnn_hdim,
self.config.st_rnn_out_dr,
self.config.st_rnn_ln)
else:
raise ValueError('Invalid mode %s' % mode)
@Profile(__name__)
def intention_layer(self, user, dur, title):
# Highway network on concat
if not self.config.no_title:
concat = torch.cat((user, dur, title), 1)
else:
concat = torch.cat((user, dur), 1)
nonl = F.rrelu(self.it_nonl(concat))
gate = torch.sigmoid(self.it_gate(concat))
return torch.mul(gate, nonl) + torch.mul(1 - gate, concat)
@Profile(__name__)
def context_title_layer(self, stc, stw, stl):
stacked_tc = []
stacked_tw = []
stacked_tl = []
split_idx = [0]
split_titles = []
# Stack context features
for tc, tw, tl in zip(stc, stw, stl):
stacked_tc += tc
stacked_tw += tw
stacked_tl += tl
split_idx += [len(tc)]
split_idx = np.cumsum(np.array(split_idx))
# Run title layer once
if len(stacked_tc) > 0:
context_titles = self.title_layer(
stacked_tc, stacked_tw, stacked_tl, mode='st')
else:
context_titles = self.empty_st_rnn_output
# Gather by split idx
for s, e in zip(split_idx[:-1], split_idx[1:]):
if s == e:
split_titles.append(self.empty_st_rnn_output)
else:
split_titles.append(context_titles[s:e])
return split_titles
@Profile(__name__)
def context_layer(self, user_embed, stitle, sdur, sslot):
# # test
# return torch.zeros(user_embed.size(0), self.context_odim) \
# .to(self.device)
context_rep_list = list()
if not self.config.no_context_title:
for usr_emb, title, dur, slot \
in zip(user_embed, stitle, sdur, sslot):
# if 0 == len(dur):
# context_rep_list.append(
# torch.zeros(1, self.context_odim).to(self.device))
# else:
if 0 == len(dur):
dur = self.emtpy_long
else:
dur = torch.LongTensor(dur).to(self.device)
if 0 == len(slot):
slot = self.emtpy_long
else:
slot = torch.LongTensor(slot).to(self.device)
usr_emb = torch.unsqueeze(usr_emb, 0)
context_rep, _ = \
self.context_layer_core(usr_emb, title, dur, slot)
context_rep_list.append(context_rep)
else:
for usr_emb, dur, slot in zip(user_embed, sdur, sslot):
# if 0 == len(dur):
# context_rep_list.append(
# torch.zeros(1, self.context_odim).to(self.device))
# else:
if 0 == len(dur):
dur = self.emtpy_long
else:
dur = torch.LongTensor(dur).to(self.device)
if 0 == len(slot):
slot = self.emtpy_long
else:
slot = torch.LongTensor(slot).to(self.device)
usr_emb = torch.unsqueeze(usr_emb, 0)
context_rep, _ = \
self.context_layer_core(usr_emb, None, dur, slot)
context_rep_list.append(context_rep)
return torch.cat(context_rep_list, dim=0)
@Profile(__name__)
def context_layer_core(self, user_embed, title, dur, slot):
new_slot = None
context_contents = None
# ready for context (contents)
total_slots = self.config.sm_day_num * self.config.sm_slot_num
saved_slot = list()
has_preregistered_events = dur.size(0) > 0
if has_preregistered_events:
dur = torch.ceil(dur.float() / (30 * self.config.class_div)) \
.long() - 1
new_slot = list()
assert dur.size(0) == slot.size(0), \
'd %d, s %d' % (dur.size(0), slot.size(0))
if not self.config.no_context_title:
assert title is not None
new_title = list()
assert title.size(0) == dur.size(0), \
't %d, d %d' % (title.size(0), dur.size(0))
for i, (d, s) in enumerate(zip(dur, slot)):
if d < 0:
d = 0
new_slot.append(s)
new_title.append(title[i])
for k in range(d):
if s + k + 1 < total_slots:
new_slot.append(s + k + 1)
new_title.append(title[i])
new_slot = np.array(new_slot)
saved_slot = new_slot[:]
new_slot = torch.LongTensor(new_slot).to(self.device)
new_title = \
torch.cat(new_title, 0). \
view(-1, self.config.st_rnn_hdim * self.num_directions)
slot_embed = F.dropout(self.slot_embed(new_slot),
p=self.config.slot_dr,
training=self.training)
slot_embed = slot_embed.view(-1, self.config.slot_embed_dim)
# slot_embed = torch.zeros(slot_embed.size()).to(self.device)
user_src_embed = user_embed.expand(slot_embed.size(0),
user_embed.size(1))
context_contents = \
torch.cat((new_title, user_src_embed, slot_embed), 1)
else:
for i, (d, s) in enumerate(zip(dur, slot)):
new_slot.append(s)
for k in range(d):
if d < 0:
d = 0
if s + k + 1 < total_slots:
new_slot.append(s + k + 1)
new_slot = np.array(new_slot)
saved_slot = new_slot[:]
new_slot = torch.LongTensor(new_slot).to(self.device)
slot_embed = F.dropout(self.slot_embed(new_slot),
p=self.config.slot_dr,
training=self.training)
slot_embed = slot_embed.view(-1, self.config.slot_embed_dim)
# slot_embed = torch.zeros(slot_embed.size()).to(self.device)
user_src_embed = user_embed.expand(slot_embed.size(0),
user_embed.size(1))
context_contents = torch.cat((user_src_embed, slot_embed), 1)
saved_slot = torch.LongTensor(saved_slot).to(self.device)
# ready for slot, user embed (base)
slot_all = torch.arange(0, total_slots, dtype=torch.long) \
.to(self.device)
slot_all_embed = self.slot_embed(slot_all)
user_all_embed = user_embed[0].expand(slot_all_embed.size(0),
user_embed.size(1))
if not self.config.no_context_title:
zero_concat = \
torch.zeros(
total_slots,
self.config.st_rnn_hdim * self.num_directions) \
.to(self.device)
context_base = torch.cat((zero_concat, user_all_embed,
slot_all_embed), 1)
else:
context_base = torch.cat((user_all_embed, slot_all_embed), 1)
# ready for context map (empty)
context_map = torch.zeros(total_slots, self.sm_conv1_idim) \
.to(self.device)
index = None
if has_preregistered_events:
index = new_slot.unsqueeze(1)
index = index.expand_as(context_contents)
slot_all = slot_all.unsqueeze(1)
slot_all = slot_all.expand_as(context_base)
# scatter base and then the contents
context_map.scatter_(0, slot_all, context_base)
if has_preregistered_events:
context_map.scatter_(0, index, context_contents)
# (sm_day_num, sm_slot_num,
# user_embed_dim + slot_embed_dim + st_rnn_hdim * num_directions)
context_map = context_map.view(self.config.sm_day_num,
self.config.sm_slot_num,
self.sm_conv1_idim)
# (user_embed_dim + slot_embed_dim + st_rnn_hdim * num_directions,
# sm_day_num,
# sm_slot_num)
context_map = context_map.permute(2, 0, 1)
# multiple filter conv
conv_list = [self.sm_conv1, self.sm_conv2]
context_mf = torch.unsqueeze(context_map, 0).to(self.device)
for layer_idx, sm_conv in enumerate(conv_list):
conv_result = list()
for filter_idx, conv in enumerate(sm_conv):
conv_out = conv(context_mf)
conv_result.append(conv_out)
context_mf = torch.cat(conv_result, 1)
if layer_idx == 0:
context_mf = F.rrelu(self.sm_conv1_bn(context_mf))
else: # layer_idx == 1
context_mf = torch.max(self.sm_conv2_bn(context_mf)
.view(1, context_mf.size(1), -1), 2)[0]
return context_mf, saved_slot
@Profile(__name__)
def matching_layer(self, title, intention, context_mf, grid):
# Highway network for mf
concat_seq = list()
if not self.config.no_context:
concat_seq.append(grid.to(self.device))
concat_seq.insert(0, context_mf)
if not self.config.no_intention:
concat_seq.insert(0, intention)
else:
if not self.config.no_title:
concat_seq.insert(0, title)
assert len(concat_seq) > 0
if len(concat_seq) > 1:
concat = torch.cat(concat_seq, 1)
else:
concat = concat_seq[0]
nonl = F.rrelu(self.mt_nonl(concat))
gate = torch.sigmoid(self.mt_gate(concat))
output = torch.mul(gate, nonl) + torch.mul(1 - gate, concat)
output = F.dropout(output, p=self.config.output_dr,
training=self.training)
return self.output_fc1(output)
@Profile(__name__)
def forward(self, user, dur, tc, tw, tl, stc, stw, stl, sdur, sslot, gr):
"""
11 Features
- user: [batch]
- dur: [batch]
- tc: [batch, sentlen, wordlen]
- tw: [batch, sentlen]
- tl: [batch]
- stc: [batch, snum, sentlen, wordlen]
- stw: [batch, snum, sentlen]
- stl: [batch, snum]
- sdur: [batch, snum]
- sslot: [batch, snum]
- gr: [batch, snum]
"""
title_rep = None
if not self.config.no_title:
# (B, t_rnn_hdim * num_directions)
title_rep = self.title_layer(tc, tw, tl)
user_embed = None
if not self.config.no_intention or not self.config.no_context:
user_embed = self.user_embed(user.to(self.device))
# user_embed = torch.zeros(user_embed.size()).to(self.device)
if self.config.user_dr > 0:
user_embed = F.dropout(user_embed,
p=self.config.user_dr,
training=self.training)
intention_rep = None
if not self.config.no_intention:
dur_embed = self.dur_embed(dur.to(self.device))
# dur_embed = torch.zeros(dur.size(0), self.config.dur_embed_dim) \
# .to(self.device)
if self.config.dur_dr > 0:
dur_embed = F.dropout(dur_embed,
p=self.config.dur_dr,
training=self.training)
# (B, user_embed_dim + dur_embed_dim + t_rnn_hdim * num_directions)
intention_rep = \
self.intention_layer(user_embed, dur_embed, title_rep)
if not self.config.no_context:
stitle_rep = None
if not self.config.no_context_title:
# (B, (VARIABLE context length, st_rnn_hdim * num_directions))
stitle_rep = self.context_title_layer(stc, stw, stl)
# (B, sum(config.sm_conv_fn[len(config.sm_conv_fn)//2:]))
context_mf = self.context_layer(user_embed, stitle_rep, sdur, sslot)
# (B, config.sm_day_num * config.sm_slot_num)
output = \
self.matching_layer(title_rep, intention_rep, context_mf, gr)
else:
output = self.matching_layer(title_rep, intention_rep, None, None)
assert output.size(1) == \
self.config.sm_day_num * self.config.sm_slot_num
return output
def get_regloss(self, weight_decay=None):
if weight_decay is None:
weight_decay = self.config.wd
reg_loss = 0
params = [self.output_fc1, self.it_nonl, self.it_gate]
for param in params:
reg_loss += torch.norm(param.weight, 2)
return reg_loss * weight_decay
def decay_lr(self, lr_decay=None):
if lr_decay is None:
lr_decay = self.config.lr_decay
self.config.lr /= lr_decay
for param_group in self.optimizer.param_groups:
param_group['lr'] = self.config.lr
print('\tlearning rate decay to %.3f' % self.config.lr)
def save_checkpoint(self, state, filename=None):
if filename is None:
filename = os.path.join(self.config.checkpoint_dir,
self.config.model_name + '.pth')
else:
filename = os.path.join(self.config.checkpoint_dir,
filename + '.pth')
print('\t-> save checkpoint %s' % filename)
if not os.path.exists(self.config.checkpoint_dir):
os.mkdir(self.config.checkpoint_dir)
torch.save(state, filename)
def load_checkpoint(self, filename=None):
if filename is None:
filename = os.path.join(self.config.checkpoint_dir,
self.config.model_name + '.pth')
else:
filename = os.path.join(self.config.checkpoint_dir,
filename + '.pth')
print('\t-> load checkpoint %s' % filename)
checkpoint = torch.load(filename,
map_location=None if 'cuda' == self.device.type
else 'cpu')
self.load_state_dict(checkpoint['state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
@Profile(__name__)
def write_summary(self, mode, loss, metrics, offset, add_histogram=False):
if mode != 'tr':
return
self.summary_writer.add_scalar('loss', loss, offset)
self.summary_writer.add_scalar('mrr', metrics[2], offset)
if add_histogram:
for name, param in self.named_parameters():
if not param.requires_grad:
continue
# add_histogram() takes lots of time
self.summary_writer.add_histogram(
name, param.clone().cpu().data.numpy(), offset)
def close_summary_writer(self):
self.summary_writer.close()
@Profile(__name__)
def get_metrics(outputs, targets, n_day_slots, n_classes, ex_targets=None,
topk=5):
if ex_targets is not None:
for output, target, et in zip(outputs, targets, ex_targets):
assert et[target] == 0
output -= et * 99999.
def get_recalls():
def get_r1_r5(_o, _t):
out_topk = torch.topk(_o, topk)[1]
if _t == out_topk[0]:
return 1., 1.
else:
if _t in out_topk:
return 0., 1.
return 0., 0.
ex1 = 0.
ex5 = 0.
for o, t in zip(outputs, targets):
r1, r5 = get_r1_r5(o, t)
ex1 += r1
ex5 += r5
return ex1, ex5
def ndcg_at_k(r, k):
def get_dcg(_r, _k):
_dcg = 0.
for rk_idx, rk in enumerate(_r):
if rk_idx == _k:
break
_dcg += ((2 ** rk) - 1) / math.log2(2 + rk_idx)
return _dcg
return get_dcg(r, k) / get_dcg(sorted(r, reverse=True), k)
def inverse_euclidean_distance(_target, pred):
euc = (((pred // n_day_slots) - (_target // n_day_slots))
** 2
+ ((pred % n_day_slots) - (_target % n_day_slots))
** 2) ** 0.5
return 1. / (euc + 1.)
def get_mrr_ndcg(calc_ndcg=False):
mrr_sum = 0.
ndcg_at_5_sum = 0.
outputs_topall_idxes = torch.topk(outputs, n_classes)[1]
# relevance vector for nDCG
relevance_vector = [0.] * n_classes if calc_ndcg else None
for target_slot_idx, ota in zip(targets, outputs_topall_idxes):
target_rank_idx = -1
for rank_idx, slot_idx in enumerate(ota):
if -1 == target_rank_idx and target_slot_idx.item() == slot_idx.item():
target_rank_idx = rank_idx
if not calc_ndcg:
break
if calc_ndcg:
# assign ieuc
relevance_vector[rank_idx] = \
inverse_euclidean_distance(slot_idx.item(),
target_slot_idx.item())
assert target_rank_idx > -1
# MRR
mrr_sum += 1. / (target_rank_idx + 1)
if calc_ndcg:
# nDCG@5
ndcg_at_5_sum += ndcg_at_k(relevance_vector, 5)
return mrr_sum, ndcg_at_5_sum
def get_ieuc():
ieuc_sum = 0.
outputs_max_idxes = torch.max(outputs, 1)[1]
for m, t in zip(outputs_max_idxes, targets):
ieuc_sum += inverse_euclidean_distance(t.item(), m.item())
return ieuc_sum
recall1, recall5 = get_recalls()
mrr, _ = get_mrr_ndcg(calc_ndcg=False)
ieuc = get_ieuc()
return recall1, recall5, mrr, ieuc