-
Notifications
You must be signed in to change notification settings - Fork 7
/
OPTIMIZATIONS
427 lines (355 loc) · 15.4 KB
/
OPTIMIZATIONS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
#1
(defun mysl (s)
(declare (simple-string s))
(declare (optimize (speed 3) (safety 0) (debug 0)))
(let ((c 0))
(declare (fixnum c))
(dotimes (i (length s))
(when (eql (aref s i) #\1)
(incf c)))
c))
* On X86 I is represented as a tagged integer.
* Unnecessary move:
3: SLOT S!11[EDX] {SB-C::VECTOR-LENGTH 1 7} => t23[EAX]
4: MOVE t23[EAX] => t24[EBX]
--------------------------------------------------------------------------------
#2
(defun quux (v)
(declare (optimize (speed 3) (safety 0) (space 2) (debug 0)))
(declare (type (simple-array double-float 1) v))
(let ((s 0d0))
(declare (type double-float s))
(dotimes (i (length v))
(setq s (+ s (aref v i))))
s))
* Python does not combine + with AREF, so generates extra move and
allocates a register.
* On X86 Python thinks that all FP registers are directly accessible
and emits costy MOVE ... => FR1.
--------------------------------------------------------------------------------
#3
(defun bar (n)
(declare (optimize (speed 3) (safety 0) (space 2))
(type fixnum n))
(let ((v (make-list n)))
(setq v (make-array n))
(length v)))
* IR1 does not optimize away (MAKE-LIST N).
--------------------------------------------------------------------------------
#4
(defun bar (v1 v2)
(declare (optimize (speed 3) (safety 0) (space 2))
(type (simple-array base-char 1) v1 v2))
(dotimes (i (length v1))
(setf (aref v2 i) (aref v1 i))))
VOP DATA-VECTOR-SET/SIMPLE-STRING V2!14[EDI] t32[EAX] t30[S2]>t33[CL]
=> t34[S2]<t35[AL]
MOV #<TN t33[CL]>, #<TN t30[S2]>
MOV BYTE PTR [EDI+EAX+1], #<TN t33[CL]>
MOV #<TN t35[AL]>, #<TN t33[CL]>
MOV #<TN t34[S2]>, #<TN t35[AL]>
* The value of DATA-VECTOR-SET is not used, so there is no need in the
last two moves.
* And why two moves?
--------------------------------------------------------------------------------
#8
(defun foo (d)
(declare (optimize (speed 3) (safety 0) (debug 0)))
(declare (type (double-float 0d0 1d0) d))
(loop for i fixnum from 1 to 5
for x1 double-float = (sin d) ;;; !!!
do (loop for j fixnum from 1 to 4
sum x1 double-float)))
Without the marked declaration Python will use boxed representation for X1.
This is equivalent to
(let ((x nil))
(setq x 0d0)
;; use of X as DOUBLE-FLOAT
)
The initial binding is effectless, and without it X is of type
DOUBLE-FLOAT. Unhopefully, IR1 does not optimize away effectless
SETs/bindings, and IR2 does not perform type inference.
--------------------------------------------------------------------------------
#9 "Multi-path constant folding"
(defun foo (x)
(if (= (cond ((irgh x) 0)
((buh x) 1)
(t 2))
0)
:yes
:no))
This code could be optimized to
(defun foo (x)
(cond ((irgh x) :yes)
((buh x) :no)
(t :no)))
--------------------------------------------------------------------------------
#11
(inverted variant of #9)
(lambda (x)
(let ((y (sap-alien x c-string)))
(list (alien-sap y)
(alien-sap y))))
It could be optimized to
(lambda (x) (list x x))
(if Y were used only once, the current compiler would optimize it)
--------------------------------------------------------------------------------
#12
(typep (truly-the (simple-array * (*)) x) 'simple-vector)
tests lowtag.
--------------------------------------------------------------------------------
#13
FAST-+/FIXNUM and similar should accept unboxed arguments in interests
of representation selection. Problem: inter-TN dependencies.
--------------------------------------------------------------------------------
#14
The derived type of (/ (THE (DOUBLE-FLOAT (0D0)) X) (THE (DOUBLE-FLOAT
1D0) Y)) is (DOUBLE-FLOAT 0.0d0). While it might be reasonable, it is
better to derive (OR (MEMBER 0.0d0) (DOUBLE-FLOAT (0.0d0))).
--------------------------------------------------------------------------------
#15
On the alpha, the system is reluctant to refer directly to a constant bignum,
preferring to load a large constant through a slow sequence of instructions,
then cons up a bignum for it:
(LAMBDA (A)
(DECLARE (OPTIMIZE (SAFETY 1) (SPEED 3) (DEBUG 1))
(TYPE (INTEGER -10000 10000) A)
(IGNORABLE A))
(CASE A
((89 125 16) (ASH A (MIN 18 -706)))
(T (DPB -3 (BYTE 30 30) -1))))
--------------------------------------------------------------------------------
#16
(do ((i 0 (1+ i)))
((= i (the (integer 0 100) n)))
...)
It is commonly expected for Python to derive (FIXNUMP I). (If ``='' is
replaced with ``>='', Python will do.)
--------------------------------------------------------------------------------
#17
Type tests for (ARRAY BIT), (ARRAY T) and similar go through full
%TYPEP, even though it is relatively simple to establish the arrayness
of an object and also to obtain the element type of an array. As of
sbcl-0.8.12.30, this affects at least DUMP-OBJECT through
COMPOUND-OBJECT-P, and (LABELS MAYBE-EMIT-MAKE-LOAD-FORMS GROVEL)
through TYPEP UNBOXED-ARRAY, within the compiler itself.
--------------------------------------------------------------------------------
#18
(lambda (x) (declare (null x)) (sxhash x)) goes through SYMBOL-HASH
rather than either constant-folding or manipulating NIL-VALUE or
NULL-TN directly.
--------------------------------------------------------------------------------
#20
(defun-with-dx foo (x)
(flet ((make (x)
(let ((l (list nil nil)))
(setf (first l) x)
(setf (second l) (1- x))
l)))
(let ((l (make x)))
(declare (dynamic-extent l))
(mapc #'print l))))
Result of MAKE is not stack allocated.
--------------------------------------------------------------------------------
#22
IR2 does not perform unused code flushing.
--------------------------------------------------------------------------------
#24
a. Iterations on &REST lists, returning them as VALUES could be
rewritten with &MORE vectors.
b. Implement local unknown-values mv-call (useful for fast type checking).
--------------------------------------------------------------------------------
#26
SBCL cannot derive upper bound for I and uses generic arithmetic here:
(defun foo (l)
(declare (vector l))
(dotimes (i (length l))
(if (block nil
(map-foo (lambda (x) (if x (return t)))
l))
t
nil)))
(So the constraint propagator or a possible future SSA-convertor
should know the connection between an NLE and its CLEANUP.)
--------------------------------------------------------------------------------
#27
Initialization of stack-allocated arrays is inefficient: we always
fill the vector with zeroes, even when it is not needed (as for
platforms with conservative GC or for arrays of unboxed objectes) and
is performed later explicitely.
(This is harder than it might look at first glance, as MAKE-ARRAY is smart
enough to eliminate something like ':initial-element 0'. Such an optimization
is valid if the vector is being allocated in the heap, but not if it is being
allocated on the stack. You could remove this optimization, but that makes
the heap-allocated case somewhat slower...)
To do this, extend ALLOCATE-VECTOR with ALLOW-JUNK argument, and when
stack allocating don't zero if it is true -- and probably ALLOW-JUNK iff
the vector is a specialized one (cannot have pointers.)
--------------------------------------------------------------------------------
#28
a. Accessing raw slots in structure instances is more inefficient than
it could be; if we placed raw slots before the header word, we would
not need to do arithmetic at runtime to access them. (But beware:
this would complicate handling of the interior pointer).
b. (Also note that raw slots are currently disabled on HPPA)
--------------------------------------------------------------------------------
#29
Python is overly zealous when converting high-level CL functions, such
as MIN/MAX, LOGBITP, and LOGTEST, to low-level CL functions. Reducing
Python's aggressiveness would make it easier to effect changes such as
x86-64:
* direct MIN/MAX on {SINGLE,DOUBLE}-FLOATs ({MIN,MAX}S{S,D})
x86-64:
* direct LOGBITP on word-sized integers and fixnums (BT + JC)
x86{,-64}/PPC:
* branch-free MIN/MAX on word-sized integers and fixnums (floats could
be handled too, modulo safety considerations on the PPC)
x86-64:
* efficient LOGTESTs on word-sized integers and fixnums (TEST)
etc., etc.
(The framework for this has been implemented as of 0.9.9.18; see the
vm-support-routine COMBINATION-IMPLEMENTATION-STYLE and its use in
src/compiler/ir1opt.lisp, IR1-OPTIMIZE-COMBINATION. The above
optimizations are left as an exercise for the reader.)
--------------------------------------------------------------------------------
#30
(defun foo (x y)
(< x y))
FOO's IR1 representation is roughly:
(defun foo (x y)
(if (< x y)
T
NIL))
However, if a full call is generated for < (and similarly for other
predicate functions), then the IF is unnecessary, since the return value
of (< x y) is already T or NIL.
--------------------------------------------------------------------------------
#31
The typecheck generated for a declaration like (integer 0 45) on x86 looks
like:
; 12B: F6C203 TEST DL, 3
; 12E: 753B JNE L1
; 130: 8BC2 MOV EAX, EDX
; 132: 83F800 CMP EAX, 0
; 135: 7C34 JL L1
; 137: 8BC2 MOV EAX, EDX
; 139: 3DB4000000 CMP EAX, 180
; 13E: 7F2B JNLE L1
A better code sequence for this would be:
TEST DL, 3
JNE L1
MOV EAX, EDX
CMP EAX, 180
JBE L1
Doing an unsigned comparison means that, similarly to %CHECK-BOUND, we can
combine the <0 and >=bound tests. This sort of test is generated often
in SBCL and any array-based code that's serious about type-checking its
indices.
--------------------------------------------------------------------------------
#32
The code for a vector bounds check on x86 (similarly on x86-64) where
the vector is in EDX and the index in EAX looks like:
; 49: L0: 8B5AFD MOV EBX, [EDX-3]
; 4C: 39C3 CMP EBX, EAX
; 4E: 7632 JBE L2
because %CHECK-BOUND is used for bounds-checking any array dimension.
A more efficient specialization (%CHECK-BOUND/VECTOR) would produce:
CMP [EDX-3], EAX
JBE L2
Which is slightly shorter and avoids using a register.
--------------------------------------------------------------------------------
#33
Reports from the Java camp indicate that using an SSE2-based
floating-point backend on x86 when possible is highly preferable to
using the x86 FP stack. It would be nice if SBCL included an SSE2-based
floating point backend with a compile-time option to switch between the
two.
--------------------------------------------------------------------------------
#35
Compiling
(defun foo (a i)
(declare (type simple-vector a))
(aref a i))
results in the following x86 code:
; 115886E9: F7C703000000 TEST EDI, 3 ; no-arg-parsing entry point
; 6EF: 7510 JNE L0
; 6F1: 8BC7 MOV EAX, EDI
; 6F3: 83F800 CMP EAX, 0
; 6F6: 7C09 JL L0
; 6F8: 8BC7 MOV EAX, EDI
; 6FA: 3DF8FFFF7F CMP EAX, 2147483640
; 6FF: 7E0F JLE L1
; 701: L0: 8B057C865811 MOV EAX, [#x1158867C] ; '(MOD
; 536870911)
; 707: 0F0B0A BREAK 10 ; error trap
; 70A: 05 BYTE #X05
; 70B: 1F BYTE #X1F ; OBJECT-NOT-TYPE-ERROR
; 70C: FECE01 BYTE #XFE, #XCE, #X01 ; EDI
; 70F: 0E BYTE #X0E ; EAX
; 710: L1: 8B42FD MOV EAX, [EDX-3]
; 713: 8BCF MOV ECX, EDI
; 715: 39C8 CMP EAX, ECX
; 717: 7620 JBE L2
; 719: 8B540A01 MOV EDX, [EDX+ECX+1]
... plus the standard return sequence and some error blocks. The
`TEST EDI, 3' and associated comparisons are to ensure that `I' is a
positive fixnum. The associated comparisons are unnecessary, as the
%CHECK-BOUND VOP only requires its tested index to be a fixnum and takes
care of the negative fixnum case itself.
{HAIRY-,}DATA-VECTOR-REF are DEFKNOWN'd with EXPLICIT-CHECK, which would
seem to take care of this, but EXPLICIT-CHECK only seems to be used when
compiling calls to unknown functions or similar. Furthermore,
EXPLICIT-CHECK, as NJF understands it, doesn't have the right
semantics--it suppresses all type checking of arguments, whereas what we
really want is to ensure that the argument is a fixnum, but not check
its positiveness.
--------------------------------------------------------------------------------
#36
In #35, the CMP EAX, $foo instructions are all preceded by a MOV. They
appear to be unnecessary, but are necessary because in IR2, EDI is a
DESCRIPTOR-REG, whereas EAX is an ANY-REG--and the comparison VOPs only
accept ANY-REGs. Therefore, the MOVs are "necessary" to ensure that the
comparison VOP receives an TN of the appropriate storage class.
Obviously, it would be better if a) we only performed one MOV prior to
all three comparisons or b) eliminated the necessity of the MOV(s)
altogether. The former option is probably easier than the latter.
--------------------------------------------------------------------------------
#38
(setf (subseq s1 start1 end1) (subseq s2 start2 end1))
could be transformed into
(let ((#:s2 s2)
(#:start2 start2)
(#:end2 end2))
(replace s1 #:s2 :start1 start1 :end1 end1 :start2 #:start2 :end2 #:end2))
when the return value is unused, avoiding the need to cons up the new sequence.
--------------------------------------------------------------------------------
#39
(let ((*foo* 42)) ...)
currently compiles to code that ensures the TLS index at runtime, which
is both a decently large chunk of code and unnecessary, as we could ensure
the TLS index at load-time as well.
--------------------------------------------------------------------------------
#40
When FTYPE is declared -- to say (function (t t t t t) t), and
function has a compiler-macro,
(apply #'foo 'x1 x2 'x3 more)
can be transformed into
(apply (lambda (x2 x4 x5) (foo 'x1 x2 'x3 x4 x5)) x2 more)
which allows compiler-macro-expansion for FOO. (Only constant
arguments can be moved inside the new lambda -- otherwise evaluation
order is altered.)
--------------------------------------------------------------------------------
#41
The unibyte external formats are written in a very generic way. Three
optimizations immediately applicable that could be automatically
generated:
(a) if the external format merely permutes the first 256 characters, a
constant-time lookup (rather than a binary search) could be
performed on output. This applies at least to EBCDIC, which
currently has a hand-rolled mapper instead.
(b) if there are no undefined characters corresponding to the 256
codes, then no error checking need be done on input.
(c) if there is a way to use particular bits of the exceptional
characters, constant-time output (rather than binary search) can
still be achieved as used to be done by the latin-9 external
format before 1.0.31.