-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsession.py
executable file
·351 lines (281 loc) · 9.74 KB
/
session.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# -*- coding: utf-8 -*-
#
# # Dobroslav P. Egorov
# # Kotel'nikov Institute of Radio-engineering and Electronics of RAS
# # 2019
#
from typing import Iterable, Tuple, Any
from pythonlangutil.overload import Overload, signature
import sys
class Point:
def __init__(self, time: Any = None, val: Any = None):
self.time = time
self.val = val
def merge(self, point: 'Point') -> None:
self.time = (self.time + point.time) / 2
self.val = (self.val + point.val) / 2
def to_tuple(self) -> tuple:
return self.time, self.val
def to_list(self) -> list:
return [*self.to_tuple()]
class Series:
def __init__(self, key: Any = None, data: Iterable[Point] = None):
self.key = key
if data:
self.data = list(data)
else:
self.data = []
@property
def is_empty(self) -> bool:
if self.data:
return False
return True
@property
def length(self) -> int:
return len(self.data)
def add(self, *points) -> None:
for p in points:
self.data.append(p)
def get_values(self) -> list:
return [p.val for p in self.data]
def get_timestamps(self) -> list:
return [p.time for p in self.data]
def get_index_closest_to(self, timestamp: float) -> int:
md, index = sys.maxsize, 0
for i, t in sorted(enumerate(self.get_timestamps()), key=lambda item: item[1]):
d = abs(t - timestamp)
if d < md:
md, index = d, i
else:
break
return index
def get(self, timestamp: float) -> Any:
return self.data[self.get_index_closest_to(timestamp)]
def rm_t_zeros(self) -> None:
self.data = [p for p in self.data if p.time != 0]
def rm_v_zeros(self) -> None:
self.data = [p for p in self.data if p.val != 0]
def remove_zeros(self, timeQ=True, valQ=True) -> None:
if timeQ:
self.rm_t_zeros()
if valQ:
self.rm_v_zeros()
def sort_t(self) -> None:
self.data = sorted(self.data, key=lambda point: point.time)
@property
def t_start(self) -> float:
return min(self.get_timestamps())
@property
def t_stop(self) -> float:
return max(self.get_timestamps())
def get_time_bounds(self) -> Tuple[float, float]:
return self.t_start, self.t_stop
def apply_to_points(self, func) -> None:
self.data = [func(p) for p in self.data]
def apply_to_data(self, func) -> None:
self.data = func(self.data)
def set_upper_threshold(self, threshold: float) -> None:
self.data = [p for p in self.data if p.val <= threshold]
def cut(self, t_start: float, t_stop: float) -> None:
self.data = [p for p in self.data if t_start <= p.time <= t_stop]
def thin(self, t_step: float) -> None:
if t_step:
t, t_stop = self.get_time_bounds()
data = []
while t < t_stop:
data.append(self.get(t))
t += t_step
self.data = data
def thin_fast(self, t_step: float) -> None:
if t_step:
t_start, t_stop = self.get_time_bounds()
n = (t_stop - t_start) // t_step
jL, data = 0, []
for i in range(int(n)):
time = t_start + i * t_step
val, k = 0, 0
for j in range(jL, len(self.data)):
t, v = self.data[j].to_tuple()
if t > time + t_step / 2:
jL = j
break
val += v
k += 1
if val:
data.append(Point(time, val / k))
else:
pass
self.data = data
def __len__(self):
return self.length
def __str__(self):
if self.length > 3:
return '{}: {:.2f}, {}: {:.2f}, ..., {}: {:.2f} (total: {})\n'.format(
*self.data[0].to_tuple(), *self.data[1].to_tuple(), *self.data[-1].to_tuple(),
self.length
)
s = ''
for p in self.data:
s += '{}: {:.2f}\n'.format(*p.to_tuple())
return s
class Session:
def __init__(self, series: Iterable[Series] = None):
if series:
self.series = list(series)
else:
self.series = []
@property
def keys(self) -> list:
keys = []
for s in self.series:
keys.append(s.key)
return keys
@property
def series_count(self) -> int:
return len(self.series)
def get_series_pos(self, key: Any) -> int:
for i in range(self.series_count):
if self.series[i].key == key:
return i
return -1
@Overload
@signature('Series')
def add(self, s: Series) -> None:
i = self.get_series_pos(s.key)
if i != -1:
self.series[i].add(*s.data)
return
self.series.append(s)
def __add_point_on_key(self, key: Any, point: Point) -> None:
i = self.get_series_pos(key)
if i != -1:
self.series[i].add(point)
return
s = Series(key)
s.add(point)
self.series.append(s)
@add.overload
@signature('float', 'Point')
def add(self, key: float, point: Point) -> None:
self.__add_point_on_key(key, point)
@add.overload
@signature('str', 'Point')
def add(self, key: str, point: Point) -> None:
self.__add_point_on_key(key, point)
def get_series(self, key: Any) -> Series:
for s in self.series:
if s.key == key:
return s
return Series()
def get_values(self, key: Any) -> list:
return self.get_series(key).get_values()
def get_timestamps(self, key: Any) -> list:
return self.get_series(key).get_timestamps()
def get_timestamps_averaged(self) -> list:
mlen = self.min_len
timestamps = [0] * mlen
for s in self.series:
ts = sorted(s.get_timestamps())
timestamps = [timestamps[i] + ts[i] for i in range(mlen)]
return [timestamps[i] / len(self.series) for i in range(mlen)]
def get_spectrum(self, timestamp: float) -> list:
spectrum = []
for s in self.series:
spectrum.append((s.key, s.get(timestamp).val))
return spectrum
def __replace(self, key: Any, data: list) -> None:
i = self.get_series_pos(key)
if i != -1:
self.series[i].data = data
return
self.add(Series(key, data))
@Overload
@signature('float', 'list')
def replace(self, key: float, data: list) -> None:
self.__replace(key, data)
@replace.overload
@signature('str', 'list')
def replace(self, key: str, data: list) -> None:
self.__replace(key, data)
@replace.overload
@signature('Series')
def replace(self, s: Series) -> None:
self.__replace(s.key, s.data)
def sort(self) -> None:
self.series = sorted(self.series, key=lambda s: s.key)
def remove_zeros(self, timeQ=True, valQ=True) -> None:
for i in range(self.series_count):
self.series[i].remove_zeros(timeQ, valQ)
def time_sorting(self) -> None:
for i in range(self.series_count):
self.series[i].sort_t()
def to_dict(self) -> dict:
d = {}
for s in self.series:
for p in s.data:
d[s.key].append((p.time, p.val))
return d
@property
def t_start(self) -> float:
return min([s.t_start for s in self.series])
@property
def t_stop(self) -> float:
return max([s.t_stop for s in self.series])
@property
def t_inf(self) -> float:
return max([s.t_start for s in self.series])
@property
def t_sup(self) -> float:
return min([s.t_stop for s in self.series])
def get_time_bounds(self) -> Tuple[float, float]:
return self.t_inf, self.t_sup
def apply_to_series(self, func) -> None:
for i in range(self.series_count):
self.series[i] = func(self.series[i])
def set_upper_threshold(self, threshold: float) -> None:
for i in range(self.series_count):
self.series[i].set_upper_threshold(threshold)
def cut(self, t_start: float, t_stop: float) -> None:
for i in range(self.series_count):
self.series[i].cut(t_start, t_stop)
def thin(self, t_step: float) -> None:
for s in self.series:
s.thin(t_step)
def thin_fast(self, t_step: float) -> None:
for s in self.series:
s.thin_fast(t_step)
@property
def min_len(self) -> int:
return min([s.length for s in self.series])
@property
def max_len(self) -> int:
return max([s.length for s in self.series])
@property
def avg_len(self) -> int:
return sum([s.length for s in self.series]) / len(self.series)
def box(self) -> None:
self.cut(*self.get_time_bounds())
def select(self, keys: list) -> 'Session':
out = Session()
for key in keys:
if key not in self.keys:
raise KeyError
out.add(self.get_series(key))
return out
def copy(self) -> 'Session':
return self.select(self.keys)
def __str__(self):
s = ''
for series in self.series:
s += '\n---- {} ----\n'.format(series.key)
s += series.__str__()
return s
def transpose(self):
boxed = self.copy()
boxed.box()
timestamps = boxed.get_timestamps_averaged()
out = Session()
for t in timestamps:
for series in boxed.series:
out.add(t, Point(series.key, series.get(t).val))
return out