-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathlosses.py
60 lines (46 loc) · 2.14 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
import torch.nn as nn
from torchvision import transforms
class MeanShift(nn.Conv2d):
def __init__(
self, rgb_range = 1,
norm_mean=(0.485, 0.456, 0.406), norm_std=(0.229, 0.224, 0.225), sign=-1):
super(MeanShift, self).__init__(3, 3, kernel_size=1)
std = torch.Tensor(norm_std)
self.weight.data = torch.eye(3).view(3, 3, 1, 1) / std.view(3, 1, 1, 1)
self.bias.data = sign * rgb_range * torch.Tensor(norm_mean) / std
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
for p in self.parameters():
p.requires_grad = False
class perceptual_loss(nn.Module):
def __init__(self, vgg):
super(perceptual_loss, self).__init__()
self.normalization_mean = [0.485, 0.456, 0.406]
self.normalization_std = [0.229, 0.224, 0.225]
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.transform = MeanShift(norm_mean = self.normalization_mean, norm_std = self.normalization_std).to(self.device)
self.vgg = vgg
self.criterion = nn.MSELoss()
def forward(self, HR, SR, layer = 'relu5_4'):
## HR and SR should be normalized [0,1]
hr = self.transform(HR)
sr = self.transform(SR)
hr_feat = getattr(self.vgg(hr), layer)
sr_feat = getattr(self.vgg(sr), layer)
return self.criterion(hr_feat, sr_feat), hr_feat, sr_feat
class TVLoss(nn.Module):
def __init__(self, tv_loss_weight=1):
super(TVLoss, self).__init__()
self.tv_loss_weight = tv_loss_weight
def forward(self, x):
batch_size = x.size()[0]
h_x = x.size()[2]
w_x = x.size()[3]
count_h = self.tensor_size(x[:, :, 1:, :])
count_w = self.tensor_size(x[:, :, :, 1:])
h_tv = torch.pow((x[:, :, 1:, :] - x[:, :, :h_x - 1, :]), 2).sum()
w_tv = torch.pow((x[:, :, :, 1:] - x[:, :, :, :w_x - 1]), 2).sum()
return self.tv_loss_weight * 2 * (h_tv / count_h + w_tv / count_w) / batch_size
@staticmethod
def tensor_size(t):
return t.size()[1] * t.size()[2] * t.size()[3]