-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_conlora.py
203 lines (154 loc) · 7.8 KB
/
demo_conlora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import gradio as gr
from minigpt4.common.config import Config
from minigpt4.common.dist_utils import get_rank
from minigpt4.common.registry import registry
from minigpt4.conversation.conversation_conlora import Chat, CONV_VISION, Conversation
# imports modules for registration
from minigpt4.datasets.builders import *
from minigpt4.models import *
from minigpt4.processors import *
from minigpt4.runners import *
from minigpt4.tasks import *
from minigpt4.processors.utils.inference_util import get_image_with_bbox, unnorm_image
import torchvision.transforms as T
from PIL import Image
import re
import uuid
global_save_dic = {}
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
parser.add_argument("--continue-chat", type=bool, default=False, help="Where to continue chat when upload new image feature.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
# ========================================
# Model Initialization
# ========================================
print('Initializing Chat')
args = parse_args()
cfg = Config(args)
model_config = cfg.model_cfg
lora_name_list = list(model_config.lora_path.keys())
model_config.device_8bit = args.gpu_id
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
print('Initialization Finished')
# ========================================
# Gradio Setting
# ========================================
def gradio_reset(chat_state, img_list):
if chat_state is not None:
chat_state.messages = []
if img_list is not None:
img_list = []
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your image first', interactive=False), gr.update(value=None, interactive=False), gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list
def upload_img(gr_img, text_input, chat_state, lora_choice, chatbot, img_list):
if gr_img is None:
return None, None, gr.update(interactive=True), chat_state, None
# set lora before upload image
chat.model.check_set_lora(lora_choice)
model_state = getattr(chat.model, 'current_lora', 'default')
chatbot.append([None, f'<mark>[***Add image feature with {model_state} state***]</mark>'])
if not args.continue_chat or not isinstance(chat_state, Conversation): # if not continue chat or chat_state is not initialized
chat_state = CONV_VISION.copy()
img_list = []
llm_message, image_after_process = chat.upload_img(gr_img, chat_state, img_list)
global_save_dic['image_after_process'] = image_after_process
return gr.update(interactive=True), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Insert image woth chosen mode", interactive=True), chat_state, img_list, chatbot
def gradio_ask(user_message, chatbot, chat_state):
if len(user_message) == 0:
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
chat.ask(user_message, chat_state)
chatbot = chatbot + [[user_message, None]]
return '', chatbot, chat_state
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
llm_message = chat.answer(conv=chat_state,
img_list=img_list,
num_beams=num_beams,
temperature=temperature,
max_new_tokens=300,
max_length=2000)[0]
model_state = getattr(chat.model, 'current_lora', 'default')
chatbot[-1][1] = f'<mark>[***{model_state}***]</mark> <br />' + llm_message
image_out_flag = False
image_after_process = global_save_dic['image_after_process']
if len(re.findall(r"<bin_(.+?)>", llm_message)) >= 2:
image_unnorm = unnorm_image(image_after_process)
image_box = get_image_with_bbox(image_unnorm, llm_message)
image_out = T.ToPILImage()(image_box)
image_out_flag = True
if image_out_flag:
image_filename = uuid.uuid4().hex + '.jpg'
image_save_path = os.path.join('./demo_tmp', image_filename)
image_out.save(image_save_path)
chatbot.append([None,(f'{image_save_path}', )])
#print([None,(f'{image_save_path}', )"])
return chatbot, chat_state, img_list # gr.update(interactive=False) if image_out_flag else image_out
title = """<h1 align="center">Demo of Connect LoRA</h1>"""
# description = """<h3>This is the demo of MiniGPT-4. Upload your images and start chatting!</h3>"""
# article = """<p><a href='https://minigpt-4.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p><p><a href='https://github.com/Vision-CAIR/MiniGPT-4'><img src='https://img.shields.io/badge/Github-Code-blue'></a></p><p><a href='https://raw.githubusercontent.com/Vision-CAIR/MiniGPT-4/main/MiniGPT_4.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></p>
# """
#TODO show examples below
with gr.Blocks() as demo:
gr.Markdown(title)
# gr.Markdown(description)
# gr.Markdown(article)
with gr.Row():
with gr.Column(scale=0.5):
image = gr.Image(type="pil")
# image_out = gr.Image(type="pil", interactive=False)
lora_choice = gr.Radio(['original'] + lora_name_list, value='original', label="Choose a mode")
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
clear = gr.Button("Restart")
num_beams = gr.Slider(
minimum=1,
maximum=10,
value=1,
step=1,
interactive=True,
label="beam search numbers)",
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
interactive=True,
label="Temperature",
)
with gr.Column():
chat_state = gr.State()
img_list = gr.State()
chatbot = gr.Chatbot(label='ConLoRA', height=5000)
text_input = gr.Textbox(label='User', placeholder='Please upload your image first', interactive=False)
upload_button.click(upload_img, [image, text_input, chat_state, lora_choice, chatbot, img_list],
[image, text_input, upload_button, chat_state, img_list, chatbot])
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
)
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list], queue=False)
demo.launch(share=True, enable_queue=True)