-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheda-26-persons.R
300 lines (264 loc) · 12.1 KB
/
eda-26-persons.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
library(haven)
library(dplyr)
library(ggplot2)
### Don't forget to change directory to this script folder
# setwd('~/stats/rlms-stats/')
## TODO: Set WD to this script and use relative path
source("helpers.R")
# ISCO-08 skill level to job code mapping
job2skill_level = list()
# Managers
job2skill_level['11'] = '4'
job2skill_level['12'] = '4'
job2skill_level['13'] = '4'
job2skill_level['14'] = '3'
# Armed forces occupations
job2skill_level['01'] = '4'
job2skill_level['02'] = '2'
job2skill_level['03'] = '1'
job2skill_level['2'] = '4' # Professionals
job2skill_level['3'] = '3' # Technicans and associate professionals
job2skill_level['4'] = '2' # Clerical support workers
job2skill_level['5'] = '2' # Services and sales workers
job2skill_level['6'] = '2' # Skilled agricultural, foresty and fishery workers
job2skill_level['7'] = '2' # Craft and related trade workers
job2skill_level['8'] = '2' # Plant and machine operators and assemblers
job2skill_level['9'] = '1' # Elementary occupations
# https://www.hse.ru/data/2018/09/09/1155096846/r26iall26b.sav
data = read_sav("data/r26iall26b.sav")
# Adults that have job or on vacation
data = data %>% mutate(age = 2017 - vh6) %>% filter(
age > 17 &
(vj1 == 1 | vj1 == 2 | vj1 == 3 | vj1 == 4) & # 1 - has job, 5 - no job
!is.na(vj2cod08)
)
# use ungroup to disable rowwise
data$salary = as.integer(data$vj13.2);
data = data %>% rowwise() %>% mutate(
isco08code = toString(vj2cod08),
isco08major = substring(isco08code, 1, 1),
salary = ifelse(salary == 99999997 | salary == 99999998 | salary == 99999999, NA, salary)
) %>% ungroup()
data$gender = factor(data$vh5, levels = c(1, 2), c('Male', 'Female'))
# Common color palette
getPalette = colorRampPalette(RColorBrewer::brewer.pal(8, "Set3"))
### Elementary occupations
elementary_occ = (data %>% filter(isco08major == '9'))
table(elementary_occ$isco08code)
prop.table(table(elementary_occ$isco08code))
elementary_occ$isco08code_factor = factor(
elementary_occ$isco08code,
levels = c('9112', '9122', '9211', '9212', '9215', '9313', '9321', '9333', '9412', '9613', '9621', '9629'),
labels = c(
'Cleaners and Helpers in Offices, Hotels and Other Establishments',
'Vehicle Cleaners',
'Crop Farm Labourers',
'Livestock Farm Labourers',
'Forestry Labourers',
'Building Construction Labourers',
'Hand Packers',
'Freight Handlers',
'Kitchen Helpers',
'Sweepers and Related Labourers',
'Messengers, Package Deliverers and Luggage Porters',
'Elementary Workers Not Elsewhere Classified'
)
)
elementary_occ$isco08code_factor = replaceNaWithNamedFactor(elementary_occ$isco08code_factor, 'Other')
### General distribution of jobs ###
elementary_occ_freq = elementary_occ %>% select(isco08code_factor) %>%
group_by(isco08code_factor) %>%
summarise(n = n()) %>%
mutate(freq=n/sum(n)*100.0) %>%
arrange(desc(n))
el_occupations_labels = ifelse(round(elementary_occ_freq$freq) < 3, '', paste0(round(elementary_occ_freq$freq), '%'))
ggplot(elementary_occ_freq, aes(x = "", y = freq, fill = isco08code_factor)) +
geom_bar(width = 1, size = 1, color = "white", stat = "identity") +
geom_text(aes(label = el_occupations_labels),
position = position_stack(vjust = 0.5)) +
labs(fill="Occupation ISCO-08",
x=NULL,
y=NULL,
fill = NULL,
title="Elementary occupations. General distribution - Russia 2017",
caption="Source: rlms26") +
coord_polar("y") +
scale_fill_manual(values = getPalette(length(unique(elementary_occ$isco08code_factor))))
### Distribution by gender ###
elementary_occ_gender = elementary_occ %>%
select(gender, isco08code_factor) %>%
group_by(isco08code_factor, gender) %>%
summarise(n = n()) %>%
mutate(freq=n/nrow(elementary_occ)*100.0)
el_occupations_gender_labels = ifelse(round(elementary_occ_gender$freq) < 1, '', paste0(round(elementary_occ_gender$freq), '%'))
ggplot(elementary_occ_gender, aes(isco08code_factor, freq)) +
geom_bar(aes(fill = gender), position = position_stack(reverse = TRUE), stat = "identity") +
coord_flip() +
theme(legend.position = "top") +
labs(fill="Gender",
x=NULL,
y=NULL,
fill = NULL,
title="Elementary occupations. Gender distribution - Russia 2017",
caption="Source: rlms26") +
geom_text(aes(label = el_occupations_gender_labels),
position = position_stack(vjust = 0.5)) +
scale_fill_brewer(palette="Dark2")
### USSR republic birthplace ###
elementary_occ$birthplace = factor(
elementary_occ$vi2,
levels = c(1:16),
labels = c(
'Russia', 'Ukraine', 'Belarus', 'Azerbaijan', 'Armenia', 'Georgia',
'Kazakhstan', 'Kyrgyzstan', 'Latvia', 'Lithuania', 'Moldova', 'Tajikistan',
'Turkmenistan', 'Uzbekistan', 'Estonia', 'Other Country'
)
)
elementary_occ$birthplace = replaceNaWithNamedFactor(elementary_occ$birthplace, 'Declined to Respond')
elementary_occ_birth = elementary_occ %>%
select(birthplace, isco08code_factor) %>%
group_by(isco08code_factor, birthplace) %>%
summarise(n = n()) %>%
mutate(freq=n/nrow(elementary_occ)*100.0)
el_occupations_birth_labels = ifelse(round(elementary_occ_birth$freq) < 2, '', paste0(round(elementary_occ_birth$freq), '%'))
ggplot(elementary_occ_birth, aes(isco08code_factor, freq)) +
geom_bar(aes(fill = birthplace), position = position_stack(reverse = TRUE), stat = "identity") +
coord_flip() +
theme(legend.position = "top") +
labs(fill="USSR Republic Bithplace",
x=NULL,
y=NULL,
fill = NULL,
title="Elementary occupations. Birthplace distribution - Russia 2017",
caption="Source: rlms26") +
geom_text(aes(label = el_occupations_birth_labels),
position = position_stack(vjust = 0.5)) +
scale_fill_manual(values = getPalette(length(unique(elementary_occ$birthplace))))
### NATIONALUTY ###
elementary_occ = elementary_occ %>% mutate(nationality = if_else(vi4 == 1, 'Russian', 'Other'))
elementary_occ$nationality = as.factor(elementary_occ$nationality)
elementary_occ_nat = elementary_occ %>%
select(nationality, isco08code_factor) %>%
group_by(isco08code_factor, nationality) %>%
summarise(n = n()) %>%
mutate(freq=n/nrow(elementary_occ)*100.0)
el_occupations_nat_labels = ifelse(round(elementary_occ_nat$freq) < 1, '', paste0(round(elementary_occ_nat$freq), '%'))
ggplot(elementary_occ_nat, aes(isco08code_factor, freq)) +
geom_bar(aes(fill = nationality), position = position_stack(reverse = TRUE), stat = "identity") +
coord_flip() +
theme(legend.position = "top") +
labs(fill="nationality",
x=NULL,
y=NULL,
fill = NULL,
title="Elementary occupations. Nationality distribution - Russia 2017",
caption="Source: rlms26") +
geom_text(aes(label = el_occupations_nat_labels),
position = position_stack(vjust = 0.5)) +
scale_fill_brewer(palette="Dark2")
### SALARY
ggplot(elementary_occ, aes(x = salary)) +
geom_histogram(color="#E69F00", fill="#E69F00", alpha=0.5) +
labs(x = "Salary in Rubles", y = NULL,
title="Elementary occupations. Salary distribution - Russia 2017",
caption="Source: rlms26"
) +
geom_vline(
aes(xintercept = median(na.omit(elementary_occ$salary)), color="median"),
linetype = "longdash"
) +
geom_vline(
aes(xintercept = mean(na.omit(elementary_occ$salary)), color="mean"),
linetype = "longdash"
) +
scale_color_manual(name = "statistics", values = c(median = "red", mean = "blue"))
elementary_occ_salary_dev_sd = sd(elementary_occ$salary, na.rm = TRUE)
elementary_occ_salary_dev = elementary_occ %>%
mutate(
salary_deviation = (salary - mean(salary, na.rm = TRUE))/sd(salary, na.rm = TRUE),
) %>%
group_by(isco08code_factor) %>%
summarise(
mean_salary_deviation = mean(salary_deviation, na.rm = TRUE),
mean_salary_deviation_type = ifelse(mean_salary_deviation < 0, "below", "above")
) %>%
arrange(mean_salary_deviation)
# reseting ordered factor to get order on plot
elementary_occ_salary_dev$isco08code_factor = factor(
elementary_occ_salary_dev$isco08code_factor,
levels = elementary_occ_salary_dev$isco08code_factor
)
ggplot(elementary_occ_salary_dev, aes(x=isco08code_factor, y=mean_salary_deviation, label=mean_salary_deviation)) +
geom_bar(stat='identity', aes(fill=mean_salary_deviation_type), width=.5) +
scale_fill_manual(name="Salary",
labels = c("Above Average", "Below Average"),
values = c("above"="#00ba38", "below"="#f8766d")) +
labs(x = NULL,
y = NULL,
title="Elementary occupations. Mean normalized salary divergence - Russia 2017",
subtitle = paste0(
"Amount of SDs (",
round(sd(elementary_occ$salary, na.rm = TRUE)),
" RUB) divergence from mean salary in elementary occupations (",
round(mean(elementary_occ$salary, na.rm = TRUE)), " RUB)."),
caption="Source: rlms26"
) +
geom_text(aes(label = round(elementary_occ_salary_dev$mean_salary_deviation, 2)),
position = position_stack(vjust = 0.5)) +
coord_flip()
### JOB SPHERE
industry_labels =tolower(c(
'ЛЕГКАЯ, ПИЩЕВАЯ ПРОМЫШЛЕННОСТЬ', 'ГРАЖДАНСКОЕ МАШИНОСТРОЕНИЕ', 'ВОЕННО-ПРОМЫШЛЕННЫЙ КОМПЛЕКС',
'НЕФТЕГАЗОВАЯ ПРОМЫШЛЕННОСТЬ', 'ДРУГАЯ ОТРАСЛЬ ТЯЖЕЛОЙ ПРОМЫШЛЕННОСТИ', 'СТРОИТЕЛЬСТВО',
'ТРАНСПОРТ, СВЯЗЬ', 'СЕЛЬСКОЕ ХОЗЯЙСТВО', 'ОРГАНЫ УПРАВЛЕНИЯ', 'ОБРАЗОВАНИЕ', 'НАУКА, КУЛЬТУРА',
'ЗДРАВООХРАНЕНИЕ', 'АРМИЯ, МВД, ОРГАНЫ БЕЗОПАСНОСТИ', 'ТОРГОВЛЯ, БЫТОВОЕ ОБСЛУЖИВАНИЕ',
'ФИНАНСЫ', 'ЭНЕРГЕТИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ', 'ЖИЛИЩНО-КОММУНАЛЬНОЕ ХОЗЯЙСТВО',
'ОПЕРАЦИИ С НЕДВИЖИМОСТЬЮ', 'СОЦИАЛЬНОЕ ОБСЛУЖИВАНИЕ', 'ЮРИСПРУДЕНЦИЯ', 'ЦЕРКОВЬ',
'ХИМИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ', 'ДЕРЕВООБРАБАТЫВАЮЩАЯ ПРОМЫШЛЕННОСТЬ', 'ЛЕСНОЕ ХОЗЯЙСТВО',
'СПОРТ, ТУРИЗМ, РАЗВЛЕЧЕНИЯ', 'УСЛУГИ НАСЕЛЕНИЮ', 'IT, ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ',
'ЭКОЛОГИЯ, ЗАЩИТА ОКРУЖАЮЩЕЙ СРЕДЫ', 'ОРГАНИЗАЦИЯ ОБЩЕСТВЕННОГО ПИТАНИЯ',
'СМИ, ИЗДАТЕЛЬСТВО, ПЕЧАТЬ, ТЕЛЕКОММУНИКАЦИИ', 'РЕКЛАМА, МАРКЕТИНГ',
'ОБЩЕСТВЕННЫЕ ОРГАНИЗАЦИИ, СОВЕТ ВЕТЕРАНОВ И ПР'
))
industry_labels = paste0(toupper(substring(industry_labels, 1,1)), substring(industry_labels, 2))
elementary_occ$industry = factor(
elementary_occ$vj4.1,
levels = c(1:32),
labels = industry_labels
)
elementary_occ$industry = replaceNaWithNamedFactor(elementary_occ$industry, 'Другое')
elementary_occ_ind_freq = elementary_occ %>%
group_by(industry) %>%
summarise(n = n()) %>%
mutate(freq=n/nrow(elementary_occ)*100.0) %>%
arrange(n)
elementary_occ_ind_freq$industry = factor(
elementary_occ_ind_freq$industry,
levels = elementary_occ_ind_freq$industry
)
ggplot(elementary_occ_ind_freq, aes(industry, freq)) +
geom_bar(position = position_stack(reverse = TRUE), stat = "identity", fill="#136593") +
coord_flip() +
theme(legend.position = "top") +
labs(x=NULL,
y=NULL,
fill = NULL,
title="Elementary occupations. Industry distribution - Russia 2017",
caption="Source: rlms26") +
scale_fill_brewer(palette="Dark2")
### AGE
ggplot(elementary_occ, aes(x = age)) +
geom_histogram(color="#E69F00", fill="#E69F00", alpha=0.5) +
labs(x = "Age", y = NULL,
title="Elementary occupations. Age distribution - Russia 2017",
caption="Source: rlms26"
) +
geom_vline(
aes(xintercept = median(na.omit(elementary_occ$age)), color="median"),
linetype = "longdash"
) +
geom_vline(
aes(xintercept = mean(na.omit(elementary_occ$age)), color="mean"),
linetype = "longdash"
) +
scale_color_manual(name = "statistics", values = c(median = "red", mean = "blue"))