-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecognize_siamese.py
206 lines (162 loc) · 6.63 KB
/
recognize_siamese.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import cv2
import numpy as np
import io
from google.cloud import vision
import torchvision
import torchvision.datasets as dset
import torchvision.transforms as transforms
from torch.utils.data import DataLoader,Dataset
import matplotlib.pyplot as plt
import torchvision.utils
import numpy as np
import random
from PIL import Image
import torch
from torch.autograd import Variable
import PIL.ImageOps
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
class SiameseNetworkDataset(Dataset):
def __init__(self,imageFolderDataset,transform=None,should_invert=True):
self.imageFolderDataset = imageFolderDataset
self.transform = transform
self.should_invert = should_invert
def __getitem__(self,index):
img0_tuple = random.choice(self.imageFolderDataset.imgs)
img1_tuple = random.choice(self.imageFolderDataset.imgs)
img0 = Image.open(img0_tuple[0])
img1 = Image.open(img1_tuple[0])
img0 = img0.convert("L")
img1 = img1.convert("L")
if self.should_invert:
img0 = PIL.ImageOps.invert(img0)
img1 = PIL.ImageOps.invert(img1)
if self.transform is not None:
img0 = self.transform(img0)
img1 = self.transform(img1)
return img0, img1 , torch.from_numpy(np.array([int(img1_tuple[1]!=img0_tuple[1])],dtype=np.float32))
def __len__(self):
return len(self.imageFolderDataset.imgs)
class SiameseNetwork(nn.Module):
def __init__(self):
super(SiameseNetwork, self).__init__()
self.cnn1 = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(1, 4, kernel_size=3),
nn.ReLU(inplace=True),
nn.BatchNorm2d(4),
nn.ReflectionPad2d(1),
nn.Conv2d(4, 8, kernel_size=3),
nn.ReLU(inplace=True),
nn.BatchNorm2d(8),
nn.ReflectionPad2d(1),
nn.Conv2d(8, 8, kernel_size=3),
nn.ReLU(inplace=True),
nn.BatchNorm2d(8),
)
self.fc1 = nn.Sequential(
nn.Linear(8*100*100, 500),
nn.ReLU(inplace=True),
nn.Linear(500, 500),
nn.ReLU(inplace=True),
nn.Linear(500, 5))
def forward_once(self, x):
output = self.cnn1(x)
output = output.view(output.size()[0], -1)
output = self.fc1(output)
return output
def forward(self, input1, input2):
output1 = self.forward_once(input1)
output2 = self.forward_once(input2)
return output1, output2
#````````````````````````````````````````````````````````````````````````````````````````
loader = transforms.Compose([transforms.Resize((100,100)),transforms.ToTensor()])
def image_loader(image_name):
"""load image, returns cuda tensor"""
image = Image.open(image_name)
image = image.convert("L")
image = loader(image).float()
image = Variable(image, requires_grad=True)
image = image.unsqueeze(0) #this is for VGG, may not be needed for ResNet
return image.cuda() #assumes that you're using GPU
#````````````````````````````````````````````````````````````````````````````````````````
net = SiameseNetwork().cuda()
net = torch.load('data/model/siamese_model.pth')
#`````````````````````````````````````````````````````````````````````````````````````````
def nearest_match(test_img_frame,i):
for root, dirs, files in os.walk("data/faces/students"):
l = dirs
break
e_d = 1000
label = None
x0 = image_loader("data/extra/1.png")
for name in l:
# folder_dataset_test = dset.ImageFolder(root="data/extra/")
# siamese_dataset = SiameseNetworkDataset(imageFolderDataset=folder_dataset_test,
# transform=transforms.Compose([transforms.Resize((100,100)),
# transforms.ToTensor()
# ])
# ,should_invert=False)
# test_dataloader = DataLoader(siamese_dataset,batch_size=1,shuffle=True)
# dataiter = iter(test_dataloader)
# x0,_,_ = next(dataiter)
x1 = image_loader("data/faces/students/"+name+'/1.png')
# folder_dataset_test = dset.ImageFolder(root="data/faces/students/"+name+'/')
# siamese_dataset = SiameseNetworkDataset(imageFolderDataset=folder_dataset_test,
# transform=transforms.Compose([transforms.Resize((100,100)),
# transforms.ToTensor()
# ])
# ,should_invert=False)
# test_dataloader = DataLoader(siamese_dataset,batch_size=1,shuffle=True)
# dataiter = iter(test_dataloader)
# for i in range(7):
# _,x1,_ = next(dataiter)
output1,output2 = net(Variable(x0).cuda(),Variable(x1).cuda())
euclidean_distance = F.pairwise_distance(output1, output2)
if e_d>euclidean_distance:
e_d = euclidean_distance
label = name
return label
#````````````````````````````````````````````````````````````````````````````````````````
cap = cv2.VideoCapture(0)
dataset_path = 'data/'
face_data =[]
labels=[]
class_id = 0
names = {}
while True:
ret,frame = cap.read()
if ret == False:
continue
client = vision.ImageAnnotatorClient()
cv2.imwrite("data/frame.jpg", frame)
path="data/frame.jpg"
with io.open(path,'rb') as image_file:
content =image_file.read()
image = vision.types.Image(content=content)
response = client.face_detection(image=image)
faces = response.face_annotations
i = 0
for face in faces:
i+=1
b =[]
for vertex in face.bounding_poly.vertices:
b.append(vertex)
x_i=int(b[0].x)
x_f=int(b[2].x)
y_i=int(b[0].y)
y_f=int(b[2].y)
face_section = frame[y_i:y_f,x_i:x_f]
face_section = cv2.resize(face_section,(100,100))
cv2.imwrite(dataset_path+'extra/'+str(i)+'.png', face_section)
pred_name = nearest_match(face_section,i)
cv2.putText(frame,pred_name,(x,y-10),cv2.FONT_HERSHEY_SIMPLEX,1,(255,0,0),2,cv2.LINE_AA)
cv2.rectangle(frame,(x_i,y_i),(x_f,y_f),(0,255,255),2)
cv2.imshow("Faces",frame)
key_pressed = cv2.waitKey(1) & 0xFF
if key_pressed == ord('x'):
break
cap.release()
cv2.destroyAllWindows()