-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcovid19-global-forecasting-week.py
176 lines (159 loc) · 5.91 KB
/
covid19-global-forecasting-week.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import numpy as np
import pandas as pd
df_test = pd.read_csv('F:\covid19-global-forecasting-week-4/test.csv')
df_train = pd.read_csv('F:\covid19-global-forecasting-week-4/train.csv')
df_submission = pd.read_csv('F:\covid19-global-forecasting-week-4/submission.csv')
# date_list(from 2020-01-22 untill2020-04-01)
work_list = []
first_date = df_train['Date'][0]
last_date = '2020-04-01'
inner_list = []
data_in_status = 0
for i in range(len(df_train)):
date = df_train['Date'][i]
if date == first_date:
date_list = []
data_in_status = 1
if data_in_status == 1:
province_state = df_train['Province_State'][i]
country_region = df_train['Country_Region'][i]
confirmed_cases = df_train['ConfirmedCases'][i]
fatalities = df_train['Fatalities'][i]
inner_dic = {'Province_State':province_state,
'Country_Region':country_region,
'Date':date,
'ConfirmedCases':confirmed_cases,
'Fatalities':fatalities
}
inner_list.append(inner_dic)
date_list.append(date)
if date == last_date:
work_list.append(inner_list)
data_in_status = 0
inner_list = []
np_date_list = np.array(date_list)
df_work_list = pd.DataFrame(work_list)
# Make add_date_list(from 2020-04-02 untill 2020-05-14)
add_date_list = []
for i in range(len(df_test['Date'])):
date = df_test['Date'][i]
add_date_list.append(date)
if date == '2020-05-14':
break
np_add_date_list = np.array(add_date_list)
print(np_add_date_list)
# Analysys, Visualization, output CSV
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score
forecast_id = 0
submission_list = []
test_list = []
for i in range(len(work_list)):
country_list = work_list[i]
if pd.isnull(country_list[0]['Province_State']):
province_state = ''
else:
province_state = '(' + country_list[0]['Province_State'] + ')'
country_region = country_list[0]['Country_Region']
confirmed_list = []
fatalities_list = []
for j in range(len(country_list)):
confirmed = country_list[j]['ConfirmedCases']
confirmed_list.append(confirmed)
fatalities = country_list[j]['Fatalities']
fatalities_list.append(fatalities)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x = date_list
y_c = np.array(confirmed_list)
y_f = np.array(fatalities_list)
x1 = np.arange(len(x))
# Determine dimensions
score_list_c = []
score_list_f = []
for dimension in range(1, 7):
fit_c = np.polyfit(x1, y_c, dimension)
fit_f = np.polyfit(x1, y_f, dimension)
y_c2 = np.poly1d(fit_c)(x1)
y_f2 = np.poly1d(fit_f)(x1)
# r2_score
score_c = r2_score(y_c, y_c2)
score_f = r2_score(y_f, y_f2)
score_list_c.append(score_c)
score_list_f.append(score_f)
max_c = max(score_list_c)
max_dimension_c = 1
for k in range(len(score_list_c)):
if score_list_c[k] == max_c:
max_dimension_c = k
break
max_f = max(score_list_f)
max_dimension_f = 1
for k in range(len(score_list_f)):
if score_list_f[k] == max_f:
max_dimension_f = k
break
fit_c = np.polyfit(x1, y_c, max_dimension_c)
fit_f = np.polyfit(x1, y_f, max_dimension_f)
y_c2 = np.poly1d(fit_c)(x1)
y_f2 = np.poly1d(fit_f)(x1)
# predict
temp_date = np.append(x, add_date_list)
x2 = x
predict_list_c = []
predict_list_f = []
saved_predict_c = 0
saved_predict_f = 0
inner_count = 0
for j in range(len(x), len(temp_date)):
predict_c = np.poly1d(fit_c)(j)
predict_f = np.poly1d(fit_f)(j)
if predict_c < predict_f:
predict_f = predict_c
x2 = np.append(x2, temp_date[j])
if predict_c > saved_predict_c:
predict_list_c.append(predict_c)
saved_predict_c = predict_c
else:
predict_list_c.append(saved_predict_c)
if predict_f > saved_predict_f:
predict_list_f.append(predict_f)
saved_predict_f = predict_f
else:
predict_list_f.append(saved_predict_f)
# for submission & display test data
forecast_id += 1
submission_dic = {'ForecastId': forecast_id,
'ConfirmedCases': saved_predict_c,
'Fatalities': saved_predict_f
}
test_dic = {'ForecastId': forecast_id,
'ConfirmedCases': saved_predict_c,
'Fatalities': saved_predict_f,
'Date': np_add_date_list[inner_count],
'Province_State': province_state,
'Country_Region': country_region
}
inner_count += 1
submission_list.append(submission_dic)
test_list.append(test_dic)
predict_list_c = np.array(predict_list_c)
predict_list_f = np.array(predict_list_f)
y_c3 = np.append(y_c2, predict_list_c)
y_f3 = np.append(y_f2, predict_list_f)
ax.plot(x, y_c, 'bo', color='y', label='Confirmed')
ax.plot(x2, y_c3, '--k', color='g', label='Confirmed')
ax.plot(x, y_f, 'bo', color='pink', label='Fatalities')
ax.plot(x2, y_f3, '--k', color='r', label='Fatalities')
plt.title(country_region + province_state)
plt.xlabel("Date")
plt.ylabel("Number of people")
plt.xticks(np.arange(0, len(x2), 10), rotation=-45)
plt.grid(True)
plt.tight_layout()
plt.legend()
plt.show()
print('Score(Confirmed):{:.4f}'.format(score_c))
print('Score(Fatalities):{:.4f}'.format(score_f))
print('Dimension(Confirmed):{}'.format(max_dimension_c))
print('Dimension(Fatalities):{}'.format(max_dimension_f))