forked from weka511/bioinformatics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BA10J.py
61 lines (49 loc) · 2.72 KB
/
BA10J.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#!/usr/bin/env python
# Copyright (C) 2020-2023 Greenweaves Software Limited
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''BA10J Solve the Soft Decoding Problem'''
from argparse import ArgumentParser
from os.path import basename
from time import time
from helpers import create_hmm_from_strings, read_strings, format_list
from hmm import float2str, SoftDecode
if __name__=='__main__':
start = time()
parser = ArgumentParser(__doc__)
parser.add_argument('--sample', default=False, action='store_true', help='process sample dataset')
parser.add_argument('--rosalind', default=False, action='store_true', help='process Rosalind dataset')
parser.add_argument('--precision', default=4, help='Controls display of probabilities')
args = parser.parse_args()
if args.sample:
print ('A\tB')
for Ps in SoftDecode('zyxxxxyxzz',
['xyz'],
['A','B'],
{('A','A'): 0.911, ('A','B'): 0.089,
('B','A'): 0.228, ('B','B'): 0.772 },
{('A','x'):0.356,('A','y'): 0.191, ('A','z'): 0.453,
('B','x'): 0.04, ('B','y'): 0.467, ('B','z'): 0.493 }):
print ('\t'.join(float2str(p,precision=args.precision) for p in Ps))
if args.rosalind:
Input = read_strings(f'data/rosalind_{basename(__file__).split(".")[0]}.txt')
xs,alphabet,States,Transition,Emission = create_hmm_from_strings(Input,
sep = '\t')
with open(f'{basename(__file__).split(".")[0]}.txt','w') as f:
print (format_list(States))
f.write(f'{format_list(States)}\n')
for line in SoftDecode(xs,alphabet,States,Transition,Emission).probabilities:
print (format_list(line))
f.write(f'{format_list(line)}\n')
elapsed = time() - start
minutes = int(elapsed/60)
seconds = elapsed - 60*minutes
print (f'Elapsed Time {minutes} m {seconds:.2f} s')