-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrecognition.py
253 lines (201 loc) · 6.85 KB
/
recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import tensorflow as tf
import numpy as np
import pickle,numpy,gzip
import datetime as dt
import matplotlib.pyplot as plt
import pylab
from scipy import signal
from scipy import misc
from PIL import Image
prepath = 'Captcha/lv3/'
convert = ['a','b','c','d','e','f','g','t','u','v','w','x','y','z','1','2','3','4','5','6']
revert = {'a':0,'b':1,'c':2,'d':3,'e':4,'f':5,'g':6,'t':7,'u':8,'v':9,
'w':10,'x':11,'y':12,'z':13,'1':14,'2':15,'3':16,'4':17,'5':18,'6':19}
def Num2Char(n):
return convert[n];
def Char2Num(c):
return revert[c]
def y_out(seq):
arr = []
for i in seq:
arr.append(Char2Num(i))
arr2 = [0.0 for i in range(20*5)]
for i in range(len(arr)):
arr2[i*20+arr[i]] = 0.2
return arr2
dataX = []
for Im in range(100):
path = prepath+"%d.jpg"%(Im)
img = misc.imread(path).astype(np.float)
grayim = np.dot(img[...,:3],[0.299,0.587,0.114])
dataX.append(grayim)
f2 = open('Captcha/pass3.txt')
labelY = f2.read().split('\n')[:100]
dataY = []
for i in range(len(labelY)):
dataY.append(y_out(labelY[i]))
# delete
del labelY
reX = dataX
reY = np.array(dataY)
#exit(0)
learning_rate = 0.001
batch_size = 50
training_iters = 2500 # 128*5000
display_step = 10
dropout = 0.75
# define placeholder
X = tf.placeholder(tf.float32,[None,40,150,1])
Y = tf.placeholder(tf.float32,[None,100])
def weight_variable(shape):
initial = tf.truncated_normal(shape,stddev = 0.2)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.5,shape=shape)
return tf.Variable(initial)
#probability placeholder for dropout layer
keep_prob = tf.placeholder(tf.float32,name='keep_prob')
sess = tf.Session()
def conv2d(img, w, b):
return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(img,w,strides=[1,1,1,1],padding='SAME'),b))
def max_pool(img, k):
return tf.nn.max_pool(img,ksize=[1,k,k,1],strides=[1,k,k,1],padding='SAME')
def make_model(_X, _weights, _biases, _dropout):
# First we have Convolution layer 5x5x48 with relu
conv1 = conv2d(_X,_weights['wc1'],_biases['bc1'])
# Max Pooling (down-sampling),change input size by factor of 2
conv1 = max_pool(conv1,k=2)
# Apply Dropout
conv1 = tf.nn.dropout(conv1,_dropout)
# Then Convolution layer 5x5x64
conv2 = conv2d(conv1,_weights['wc2'],_biases['bc2'])
# Max Pooling
conv2 = max_pool(conv2,k=2)
# Apply Dropout
conv2 = tf.nn.dropout(conv2,_dropout)
# Convolution layer 5x5x128
conv3 = conv2d(conv2,_weights['wc3'],_biases['bc3'])
# Max Pooling
conv3 = max_pool(conv3,k=2)
#Apply dropout
conv3 = tf.nn.dropout(conv3,_dropout)
#Reshape and do fully-connected hidden layer using matrix multiplication
pool_shape= conv3.get_shape().as_list()
fullcn = tf.reshape(conv3,[-1,pool_shape[1]* pool_shape[2]*pool_shape[3]] )
fullcn = tf.nn.relu(
tf.add(tf.matmul(fullcn,_weights['wd1']), _biases['bd1'])
)
fullcn = tf.nn.dropout(fullcn, _dropout)
# Output
out = tf.add(tf.matmul(fullcn,_weights['out']),_biases['out'])
return out
weight = {
'wc1': tf.Variable(tf.truncated_normal([5,5,1,32],stddev = 0.1)),
'wc2':tf.Variable(tf.truncated_normal([5,5,32,48], stddev = 0.1)),
'wc3':tf.Variable(tf.truncated_normal([5,5,48,64], stddev = 0.1)),
'wd1':tf.Variable(tf.truncated_normal([5*19*64,1000], stddev = 0.1)),
'out':tf.Variable(tf.truncated_normal([1000,100], stddev = 0.1))
}
biases = {
'bc1': tf.Variable(0.1*tf.random_normal([32])),
'bc2': tf.Variable(0.1*tf.random_normal([48])),
'bc3': tf.Variable(0.1*tf.random_normal([64])),
'bd1': tf.Variable(0.1*tf.random_normal([1000])),
'out': tf.Variable(0.1*tf.random_normal([100]))
}
# Construct model
predict = make_model(X,weight,biases,keep_prob)
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(predict,Y)
loss = tf.reduce_mean(cross_entropy)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)
# batch, rows, cols
p = tf.reshape(predict,[-1,5,20])
# max idx acros the rows
max_idx_p = tf.argmax(p,2)
l = tf.reshape(Y,[-1,5,20])
max_idx_l = tf.argmax(l,2)
correct_pred = tf.equal(max_idx_p,max_idx_l)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
init = tf.global_variables_initializer()
losses = list()
accuracies = list()
saver = tf.train.Saver()
def showcapt(arr):
res = ''
achar = -1
#print 'debug in show captcha'
#print arr
#print arr[0]
for i in range(5):
achar = arr[i]
res+=Num2Char(achar)
return res
from scipy import signal
from scipy import misc
#sub import
import matplotlib.pyplot as plt
from PIL import Image
#print ' training...'
# Launch the graph
def view_(_pred,_lable):
fname = ['Captcha/lv3/%i.jpg' %i for i in range(20)]
img = []
for fn in fname:
img.append(Image.open(open(fn)))
#img.append(misc.imread(fn).astype(np.float))
for i in range(len(img)):
pylab.subplot(4,5,i+1); pylab.axis('off')
pylab.imshow(img[i])
#pylab.imshow( np.dot(np.array(img[i])[...,:3],[0.299,0.587,0.114]) , cmap=plt.get_cmap("gray"))
#pylab.text(40,60,_pred[i],color = 'b')
if ( _pred[i] == _lable[i] ):
pylab.text(40,65,_pred[i],color = 'b',size = 15)
else:
pylab.text(40,65,_pred[i],color = 'r',size = 15)
pylab.text(40,92,_lable[i],color = 'g',size = 15)
pylab.show()
with tf.Session() as sess:
#load old model
#saver.restore(sess, "model.data")
new_saver = tf.train.import_meta_graph('train3.data.meta')
new_saver.restore(sess, tf.train.latest_checkpoint('./'))
all_vars = tf.trainable_variables()
#sess.run(init)
step = 0
epoch = 0
start_epoch = dt.datetime.now()
#training
for step in range(1):
#Optimizer model by training
#for start, end in zip(range(0, len(trX), batch_size), range(batch_size, len(trX), batch_size)):
# sess.run(optimizer,feed_dict={X:np.array(trX[start:end]).reshape(-1,40,140,1)/256.0,Y:trY[start:end],keep_prob:dropout})
# Calculate accuracy
acc = 0
batch_loss = 0
for start, end in zip(range(0, len(reX), batch_size), range(batch_size, len(reX), batch_size)):
acc = sess.run(accuracy,feed_dict={X:np.array(reX[start:end]).reshape(-1,40,150,1)/256.0,Y:reY[start:end],keep_prob:1.})
accuracies.append(acc)
#
batch_loss=sess.run(loss,feed_dict={X:np.array(reX[start:end]).reshape(-1,40,150,1)/256.0,Y:reY[start:end],keep_prob:1.})
losses.append(batch_loss)
#print '#Step %d, loss = %.4f, accuracy = %.4f'%(step,batch_loss,acc)
#print '\t\t@losses = %.4f, accuracies = %.4f'%(sum(losses)/len(losses), sum(accuracies)/len(accuracies) )
# Show word predict
pp = sess.run(predict,feed_dict={X:np.array(reX[:batch_size]).reshape(-1,40,150,1)/256.0,Y:reY[:batch_size],keep_prob:1.})
p = tf.reshape(pp, [batch_size,5,20])
max_idx_p = tf.argmax(p,2).eval()
ff = reY[:batch_size]
f = tf.reshape(ff,[batch_size,5,20])
max_idx_f = tf.argmax(f,2).eval()
v_p = []
v_f = []
#print 'prediction and fact : '
for tmp in range(20):
v_p.append(showcapt(max_idx_p[tmp]))
#print
for tmp in range(20):
v_f.append(showcapt(max_idx_f[tmp]))
#print
view_(v_p,v_f)
#if step % 10 == 0:
# saver.save(sess, "hard_train.data")