-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval.py
106 lines (74 loc) · 2.56 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#!/usr/bin/env python
# coding: utf-8
# In[1]:
# Necessary
import os
import sys
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import TensorDataset, DataLoader, random_split
import torchvision
#import matplotlib.pyplot as plt
from tqdm.notebook import tqdm
from torchdiffeq import odeint_adjoint as odeint
from skimage.util import random_noise
#from jupyterthemes import jtplot
from utils import *
#jtplot.style(theme="chesterish")
# CONSTANT
device = "cuda"
EPOCHS=1
BATCH_SIZE=32
IMG_SIZE=(32,32,3)
# In[2]:
# Load data
DIR = "./data/mnist/"
MNIST = torchvision.datasets.MNIST(DIR,
train=True,
transform=None,
target_transform=None, download=False)
#ds_len_, normal_ds_, pertubed_ds_ = preprocess_data(MNIST)
# In[3]:
cnn_model = Network()
ode_func = ODEBlock()
ode_model = ODENet(ode_func)
# In[4]:
def model_state_dict_parallel_convert(state_dict, mode):
from collections import OrderedDict
new_state_dict = OrderedDict()
if mode == 'to_single':
for k, v in state_dict.items():
name = k.replace("module.","") # remove 'module.' of DataParallel
new_state_dict[name] = v
elif mode == 'to_parallel':
for k, v in state_dict.items():
name = 'module.' + k # add 'module.' of DataParallel
new_state_dict[name] = v
elif mode == 'same':
new_state_dict = state_dict
else:
raise Exception('mode = to_single / to_parallel')
return new_state_dict
ode_state_dict = torch.load("./model/ode_origin/mnist_origin_origin.pt",map_location=torch.device('cuda'))
print(type(ode_state_dict))
ode_state_dict = model_state_dict_parallel_convert(ode_state_dict, mode="to_single")
ode_model.load_state_dict(ode_state_dict)
cnn_state_dict = torch.load("./model/cnn_origin/mnist_origin_origin.pt",map_location=torch.device('cuda'))
cnn_state_dict = model_state_dict_parallel_convert(cnn_state_dict, mode="to_single")
cnn_model.load_state_dict(cnn_state_dict)
ode_model = ode_model.to(device)
cnn_model = cnn_model.to(device)
# In[5]:
#print(_ds)
# In[7]:
sigma=[0.0]
for key in sigma:
_ds_len, _ds = preprocess_data(MNIST, sigma=key, device=device)
loader = DataLoader(_ds, batch_size=12000)
_, cnn_acc = cnn_model.evaluate(loader)
_, ode_acc = ode_model.evaluate(loader)
print(f"CNNs for {key}-gaussian-pertubed MNIST = {cnn_acc}")
print(f"ODEs for {key}-gaussian-pertubed MNIST = {ode_acc}")
# In[ ]: