-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmanuscript_kernel.R
458 lines (367 loc) · 16.6 KB
/
manuscript_kernel.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
# The computationally intensive analyses for the manuscript
# presented at https://github.com/dunnlab/animal_tree_root/tree/master/manuscript .
#
# Executing this code generates manuscript.RData, which contains analysis
# results. That file is then read by manuscript.rmd for rendering and
# presentation of the results.
#
# The code presented here is roughly in the order of the analyses presented
# in the manuscript, though there are exceptions
## Preliminaries
time_start = Sys.time()
library( tidyverse )
library( magrittr )
library( igraph )
library( doParallel )
source( "functions.R" )
source( "phylobayes.R" )
# Set system computational parameters
cores = detectCores() - 1
if ( cores < 1 ) {
cores = 1
}
# Register parallel workers for %dopar%
registerDoParallel( cores )
# Set up constants
focal_matrices =
read.table(text =
"manuscript matrix
Borowiec2015 Total1080
Chang2015 Chang2015
Dunn2008 Dunn2008
Hejnol2009 Hejnol2009
Moroz2014 ED3a
Nosenko2013 nonribosomal_9187_smatrix
Nosenko2013 ribosomal_11057_smatrix
Philippe2009 Philippe2009
Ryan2013 est.opisthokonta
Ryan2013 genome.opisthokonta
Simion2017 supermatrix_97sp_401632pos_1719genes
Whelan2015 Metazoa_Choano_RCFV_strict",
header = TRUE,
stringsAsFactors = FALSE)
bootstrap_threshold = 90
posterior_prob_threshold = 95
# Load data
papers = read_tsv( "../data_processed/tables/previously_published_manuscripts.tsv" )
datasets = read_tsv( "../data_processed/tables/previously_published_matrices.tsv" )
analyses_published =
read_tsv( "../data_processed/tables/previously_published_analyses.tsv") %>%
mutate( clade = factor( clade, levels = c( "Choanimalia", "Holozoa", "Opisthokonta" ) ) )
taxonomy_reference = read_tsv("../reconciliation/taxonomy_info/taxon_table.tsv")
# raw columns:
# component_number, matrix, partition_name, edges, nodes_in_component, component_density, BUSCO_ID, BUSCO_description,
# SwissProt_accession, SwissProt_description, GO_annotations, ribo_found
partition_map_global =
read_tsv("../reconciliation/blast/graphs/partition_components_split_annotated.tsv") %>%
dplyr::rename(partition = partition_name) %>%
mutate( component_number = as.character(component_number) )
analyses_published$result = "Unresolved"
analyses_published$result[
( analyses_published$inference == "Bayesian" ) &
(analyses_published$support_porifera_sister >= posterior_prob_threshold) ] = "Porifera-sister"
analyses_published$result[
( analyses_published$inference == "Bayesian" ) &
(analyses_published$support_ctenophora_sister >= posterior_prob_threshold) ] = "Ctenophora-sister"
analyses_published$result[
( analyses_published$inference == "ML" ) &
(analyses_published$support_porifera_sister >= bootstrap_threshold) ] = "Porifera-sister"
analyses_published$result[
( analyses_published$inference == "ML" ) &
(analyses_published$support_ctenophora_sister >= bootstrap_threshold) ] = "Ctenophora-sister"
analyses_published$result = factor( analyses_published$result )
analyses_published$model_combined =
factor(
analyses_published$model_combined,
levels = c( "WAG", "LG", "GTR", "data partitioning", "Recoding + GTR",
"Recoding + GTR + CAT", "Poisson + CAT", "GTR + CAT" ) )
# Matrix taxon composition
clades = c( "Fungi", "Ichthyosporea", "Filasterea", "Choanoflagellida", "Ctenophora",
"Porifera", "Placozoa", "Bilateria", "Cnidaria" )
taxa =
taxonomy_reference %>%
distinct( relabelled_name, clade_assignment, ncbi_tax_id ) %>%
dplyr::rename( taxon = relabelled_name, clade = clade_assignment ) %>%
mutate( clade = factor( clade, levels = clades ) )
matrix_path = "../data_processed/matrices"
phylip_file_names = list.files(path = matrix_path, pattern = ".+\\.phy$", full.names = TRUE)
sequence_matrices = foreach( phylip_file = phylip_file_names) %dopar%
parse_phylip( phylip_file )
# Make contraint trees for each matrix
constraint_tree_path = "../trees_new/constraint_trees/"
lapply(sequence_matrices, generate_constraint_trees)
# Matrix gene composition
busco_results =
read_tsv("../reconciliation/blast/graphs/busco_metazoa_results.tsv") %>%
filter( Status != "Missing" )
sequences_all_txt =
read_tsv("../reconciliation/blast/all_parts_list.txt")
names(sequences_all_txt) = c("full_name")
sequences_all = str_split_fixed( sequences_all_txt$full_name, ":", 4 ) %>%
as_tibble()
names( sequences_all ) = c( "matrix", "species", "ncbi_taxon_id", "partition" )
partitions_all =
sequences_all %>%
group_by( matrix, partition ) %>%
summarise( n_sequences = n() )
# Multiple fields are in one colon delimited string. Need to parse them out.
# Busco result example
# "Moroz2014:ED3a:Capitella:51293:0241"
# manuscript:matrix:species:NCBI_taxon_id:partition
Bs =
str_split_fixed( busco_results$Sequence, ":", 4 ) %>%
as_tibble()
names( Bs ) = c( "matrix", "species", "ncbi_taxon_id", "partition" )
Bs %<>% mutate( ncbi_taxon_id = as.integer(ncbi_taxon_id) )
busco_results %<>% bind_cols( Bs )
# Find overrepresented partitions, ie partitions with genes that hit more than one Busco
busco_distinct = busco_results %>% select( matrix, partition, Description ) %>% distinct( )
busco_overrepresented = busco_distinct %>% group_by( matrix, partition ) %>% summarise( n = n() ) %>% filter( n > 1 )
busco_overrepresented_full = left_join( busco_overrepresented, busco_results )
# Combine and summarize results
partition_to_busco_map =
busco_distinct %>%
group_by( matrix, partition ) %>%
summarise( BUSCO = names(which(table(Description) == max(table(Description)))[1]) )
partition_map_global %<>% left_join( partition_to_busco_map, by = c("matrix", "partition") )
busco_summary =
partition_to_busco_map %>%
group_by( matrix ) %>%
summarise( n_busco_partitions = n() )
matrix_summary =
partitions_all %>%
group_by( matrix ) %>%
summarise( n_partitions = n() ) %>%
left_join(
busco_summary,
by = c("matrix")
)
matrix_summary$manuscript = str_split( matrix_summary$matrix, "_", simplify = TRUE )[, 1]
cluster_summary =
partition_map_global %>%
group_by( component_number ) %>%
summarise(
n_partitions = n(),
n_matrices = length(unique(matrix)),
n_with_busco = sum(! is.na(BUSCO)),
n_unique_busco = length(unique(na.omit(BUSCO)))
)
# Matrix overlap
matrix_overlap =
lapply(sequence_matrices, function(x) lapply(sequence_matrices, function(y) compute_matrix_overlap(x, y))) %>%
unlist(recursive = FALSE) %>%
bind_rows()
# Remove reciprocal comparisons and comparisons to self
n = nrow(matrix_overlap)
mask = lower.tri(matrix(nrow = sqrt(n), ncol = sqrt(n)))
dim(mask) = NULL
matrix_overlap = matrix_overlap[mask, ]
# New analyses of published matrices
# read iqtrees
trees_path_iqtree = "../trees_new/iqtree"
iqtree_ext = "\\.treefile$"
file_names_iqtree = list.files( path = trees_path_iqtree, pattern = iqtree_ext, full.names = TRUE )
trees_iq = foreach( tree_file = file_names_iqtree ) %dopar%
parse_tree_iqtree( tree_file, taxonomy_reference )
# read phylobayes
trees_path_sensitive = "../trees_new/sensitive"
pb_tree_ext = "\\.con\\.tre$"
# read pb trees
trees_path_pb = "../trees_new/phylobayes"
file_names_pb = list.files( path = trees_path_pb, pattern = pb_tree_ext, full.names = TRUE )
trees_pb = foreach( tree_file = file_names_pb ) %dopar%
parse_tree_pb( tree_file, taxonomy_reference )
# sensitivity analyses
file_names_sensitive = list.files( path = trees_path_sensitive, pattern = pb_tree_ext, full.names = TRUE )
trees_sensitive = foreach( tree_file = file_names_sensitive ) %dopar%
parse_tree_pb( tree_file, taxonomy_reference )
# sensitivity tibble
analyses_sensitive = lapply(
trees_sensitive,
function( tree ){
data.frame(
matrix = tree$matrix,
model = tree$model,
clade = tree$sampling,
support_ctenophora_sister = tree$ctenophora_sister * 100,
support_porifera_sister = tree$porifera_sister * 100,
stringsAsFactors = FALSE
)
}
) %>%
bind_rows()
analyses_sensitive$inference = rep( "Bayesian", length( trees_sensitive ) )
analyses_sensitive$result = "Unresolved"
analyses_sensitive$result[ (analyses_sensitive$support_porifera_sister >= posterior_prob_threshold) ] =
"Porifera-sister"
analyses_sensitive$result[ (analyses_sensitive$support_ctenophora_sister >= posterior_prob_threshold) ] =
"Ctenophora-sister"
analyses_sensitive$result = factor( analyses_sensitive$result )
analyses_sensitive$model_summary = factor(
analyses_sensitive$model,
levels = c("Poisson+CAT60", "Poisson+CAT70", "Poisson+CAT80", "Poisson+CAT90", "Poisson+CAT100",
"Poisson+CAT110", "Poisson+CAT120", "Poisson+CAT150", "Poisson+CAT180", "Poisson+CAT270",
"Poisson+CAT340", "Poisson+CAT360", "Poisson+CAT380", "Poisson+CAT400", "Poisson+CAT420",
"Poisson+CAT440", "Poisson+CAT460", "Poisson+CAT480")
)
# new trees tibble
analyses_new = lapply(
c( trees_iq, trees_pb ),
function( tree ){
data.frame(
matrix = tree$matrix,
model = tree$model,
modelfinder = tree$modelfinder,
clade = tree$sampling,
support_ctenophora_sister = tree$ctenophora_sister * 100,
support_porifera_sister = tree$porifera_sister * 100,
stringsAsFactors = FALSE
)
}
) %>%
bind_rows()
analyses_new$inference = c( rep( "ML", length( trees_iq ) ), rep( "Bayesian", length( trees_pb ) ))
# Summarize result
analyses_new$result = "Unresolved"
analyses_new$result[ ( analyses_new$inference == "Bayesian" ) &
(analyses_new$support_porifera_sister >= posterior_prob_threshold) ] = "Porifera-sister"
analyses_new$result[ ( analyses_new$inference == "Bayesian" ) &
(analyses_new$support_ctenophora_sister >= posterior_prob_threshold) ] = "Ctenophora-sister"
analyses_new$result[ ( analyses_new$inference == "ML" ) &
(analyses_new$support_porifera_sister >= bootstrap_threshold) ] = "Porifera-sister"
analyses_new$result[ ( analyses_new$inference == "ML" ) &
(analyses_new$support_ctenophora_sister >= bootstrap_threshold) ] = "Ctenophora-sister"
analyses_new$result = factor( analyses_new$result )
# Parse model components
analyses_new$model_summary = analyses_new$model
analyses_new$model_summary = factor( analyses_new$model_summary, levels = c("WAG", "GTR20", "Poisson+C60", "WAG+C60",
"LG+C60", "CAT+F81"))
# Partition comparison across matrices
n_total_partitions =
partitions_all %>%
group_by(matrix) %>%
summarize("n_total_partitions" = n_distinct(partition))
n_components_with_BUSCO =
partition_map_global %>%
filter(BUSCO_ID != "") %>%
group_by( matrix, component_number ) %>%
summarize(n()) %>%
group_by(matrix) %>%
tally(name = "n_components_with_BUSCO")
n_ribo =
partition_map_global %>%
group_by( matrix, component_number ) %>%
tally(ribo_found) %>%
group_by(matrix) %>%
tally()
discarded_parts =
read_tsv("../reconciliation/blast/graphs/discarded_nodes.tsv") %>%
group_by(matrix) %>%
summarize("n_partitions_discarded" = n_distinct(partition_name))
partition_network_summary =
n_total_partitions %>%
left_join(n_components_with_BUSCO, by = "matrix") %>%
left_join(n_ribo, by = "matrix") %>%
left_join(discarded_parts, by = "matrix") %>%
mutate(n_partitions_discarded = replace_na(n_partitions_discarded, 0))
### Summarize phylogenetic signal by genes
au_tests = parse_au_gene_tests()
### Summarize categories from pbmpi
# Parse the last sample from chain 1 of each analysis
phil_cat_c1 =
parse_phylobayes_last_sample("../trees_new/frequency/subsampled_Philippe2009_only_choanozoa.phy_Poisson_CAT_Chain_1.chain")
phil_cat60_c1 =
parse_phylobayes_last_sample("../trees_new/frequency/subsampled_Philippe2009_only_choanozoa.phy_Poisson_nCAT60_Chain_1.chain")
whel_cat_c1 =
parse_phylobayes_last_sample("../trees_new/frequency/subsampled_Whelan2017_strict.phy_Poisson_CAT_Chain1.chain")
whel_cat60_c1 =
parse_phylobayes_last_sample("../trees_new/frequency/subsampled_Whelan2017_strict.phy_Poisson_CAT60_Chain_1.chain")
# Create a single tibble with summaries of all analyses
pb_summaries = list(
summarise_sample(phil_cat_c1) %>%
mutate ( chain=1, matrix="Philippe2009", model="Poisson+CAT"),
summarise_sample(phil_cat60_c1) %>%
mutate ( chain=1, matrix="Philippe2009", model="Poisson+nCAT60"),
summarise_sample(whel_cat_c1) %>%
mutate ( chain=1, matrix="Whelan2017_strict", model="Poisson+CAT"),
summarise_sample(whel_cat60_c1) %>%
mutate ( chain=1, matrix="Whelan2017_strict", model="Poisson+nCAT60")
) %>%
bind_rows() %>%
mutate( analysis = paste(matrix, model, sep=" ")) %>%
mutate( model=factor(model, levels=c("Poisson+nCAT60", "Poisson+CAT")) )
pb_frequencies = pb_summaries %>% select( starts_with("aa.") ) %>% data.matrix()
# Identify the midpoint of each set of allocations
mid_phil_cat =
pb_summaries %>%
filter( matrix=="Philippe2009" ) %>%
filter( model=="Poisson+CAT" ) %>%
allocation_midpoint()
mid_phil_ncat60 =
pb_summaries %>%
filter( matrix=="Philippe2009" ) %>%
filter( model=="Poisson+nCAT60" ) %>%
allocation_midpoint()
mid_whel_cat =
pb_summaries %>%
filter( matrix=="Whelan2017_strict" ) %>%
filter( model=="Poisson+CAT" ) %>%
allocation_midpoint()
mid_whel_ncat60 =
pb_summaries %>%
filter( matrix=="Whelan2017_strict" ) %>%
filter( model=="Poisson+nCAT60" ) %>%
allocation_midpoint()
n_categories_phil_cat =
pb_summaries %>%
filter( matrix=="Philippe2009" ) %>%
filter( model=="Poisson+CAT" ) %>%
nrow()
n_categories_whel_cat =
pb_summaries %>%
filter( matrix=="Whelan2017_strict" ) %>%
filter( model=="Poisson+CAT" ) %>%
nrow()
# Perform global MDS analysys
fit = cmdscale( dist( pb_frequencies ) ,eig=TRUE, k=2)
pb_summaries %<>% mutate( x_global = fit$points[,1], y_global = fit$points[,2] )
## Write the results from RData to prepare them for supplementary tables
write_csv(partition_map_global, "./Supplementary_tables/Supplementary_Table_8.csv", na = "NA", quote_escape = "double")
write_csv(analyses_published, "./Supplementary_tables/Supplementary_Table_1.csv", na = "NA", quote_escape = "double")
write_csv(analyses_new, "./Supplementary_tables/Supplementary_Table_2.csv", na = "NA", quote_escape = "double")
write_csv(analyses_sensitive, "./Supplementary_tables/Supplementary_Table_5.csv", na = "NA", quote_escape = "double")
write_csv(au_tests, "./Supplementary_tables/Supplementary_Table_7.csv", na = "NA", quote_escape = "double")
modelfinder = analyses_new %>%
filter(modelfinder == TRUE) %>%
select( matrix, clade, result, model_summary)
write_csv(modelfinder, "./Supplementary_tables/Supplementary_Table_3.csv", na = "NA", quote_escape = "double")
## Move all read functions to kernel so all vairables are stored in Rdata
cat_categories = read_tsv("../data_processed/tables/cat_categories.tsv")
table_study_summary = read_tsv("../data_processed/tables/study_summary.tsv")
taxa_map_whelan=read_tsv("../reconciliation/taxonomy_info/taxon_table.tsv") %>% filter(original_matrix=="../considered_data/Whelan2017/strict.phy")
taxa_map_philippe=read_tsv("../reconciliation/taxonomy_info/taxon_table.tsv") %>% filter(original_matrix=="../considered_data/Philippe2009/Philippe2009.nex")
tree1= read.tree("../trees_new/iqtree/Whelan2017_strict.model_test.treefile")
tree2=read.tree("../trees_new/sensitive/Whelan2017_strict.phy_Poisson_CAT60.con.tre")
tree3=read.tree("../trees_new/sensitive/Whelan2017_strict.phy_Poisson_CAT90.con.tre")
tree4=read.tree("../trees_new/phylobayes/Whelan2017_strict.bpcomp.con.tre")
tree5=read.tree("../trees_new/phylobayes/Whelan2017_strict.phy_GTR_CAT.con.tre")
tree6= read.tree("../trees_new/iqtree/Philippe2009_only_choanozoa.WAG+C60.treefile")
tree7=read.tree("../trees_new/sensitive/Philippe2009_only_choanozoa.phy_Poisson_CAT60.con.tre")
tree8=read.tree("../trees_new/sensitive/Philippe2009_only_choanozoa.phy_Poisson_CAT150.con.tre")
tree9=read.tree("../trees_new/phylobayes/Philippe2009_only_choanozoa.bpcomp.con.tre")
tree10=read.tree("../trees_new/phylobayes/Philippe2009_only_choanozoa.phy_GTR_CAT.con.tre")
ribo = read_tsv("../data_processed/tables/ribosomal_gene.tsv")
busco = read_tsv("../data_processed/tables/busco_gene.tsv")
cross_validation =
read_tsv("../data_processed/tables/cross_validation.tsv") %>%
gather("model", "score", `nCAT60`, `Poisson-CAT`)
## Record information about the session
session_info_kernel = sessionInfo()
system_time_kernel = Sys.time()
commit_kernel =
system("git log | head -n 1", intern = TRUE) %>%
str_replace("commit ", "")
time_stop = Sys.time()
time_run = time_stop - time_start
## Write the results to prepare them for manuscript.rmd
save.image("manuscript.RData")