-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhiczin_contact.py
160 lines (118 loc) · 4.25 KB
/
hiczin_contact.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/usr/bin/env python
# coding: utf-8
import numpy as np
import scipy.sparse as scisp
from math import log,exp,sqrt
import logging
import os
# package logger
logger = logging.getLogger(__name__)
class HiCzinMap:
def __init__(self, path , contig_info , seq_map , norm_result , min_signal):
'''
perc: threshold of spurious contacts
min_signal: minimum signal of acceptable contigs
'''
self.path = path
self.seq_map = seq_map
self.norm_result = norm_result
self.signal = min_signal
self.name = []
self.site = []
self.len = []
self.cov = []
self.tax = []
for i in range(len(contig_info)):
temp = contig_info[i]
self.name.append(temp.name)
self.site.append(temp.sites)
self.len.append(temp.length)
self.cov.append(temp.cov)
self.tax.append(temp.tax)
del contig_info
self.name = np.array(self.name)
self.site = np.array(self.site)
self.len = np.array(self.len)
self.cov = np.array(self.cov)
self.tax= np.array(self.tax)
self.cov[self.cov==0] = np.min(self.cov[self.cov!=0])
self.norm()
del self.site, self.cov
def norm(self):
self.seq_map = self.seq_map.tocoo()
_map_row = self.seq_map.row
_map_col = self.seq_map.col
_map_data = self.seq_map.data
_map_coor = list(zip(_map_row , _map_col , _map_data))
coeff = self.norm_result[0:4]
self.seq_map = self.seq_map.tolil()
self.seq_map = self.seq_map.astype(np.float)
for x,y,d in _map_coor:
s1 = self.site[x]
if s1 == 0:
s1 = 1
s2 = self.site[y]
if s2 == 0:
s2 = 1
s = (log(s1*s2)-self.norm_result[5])/self.norm_result[6]
l1 = self.len[x]
l2 = self.len[y]
l = (log(l1*l2)-self.norm_result[7])/self.norm_result[8]
c1 = self.cov[x]
c2 = self.cov[y]
c = (log(c1*c2)-self.norm_result[9])/self.norm_result[10]
d_norm = d/exp(coeff[0] + coeff[1] * s + coeff[2] * l + coeff[3]* c)
if d_norm > self.norm_result[4]:
self.seq_map[x , y] = d_norm
else:
self.seq_map[x , y] = 0
del _map_row, _map_col, _map_data, _map_coor
class HiCzinMap_LC:
def __init__(self, path , contig_info , seq_map , norm_result , min_signal):
'''
perc: threshold of spurious contacts
min_signal: minimum signal of acceptable contigs
'''
self.path = path
self.seq_map = seq_map
self.norm_result = norm_result
self.signal = min_signal
self.name = []
self.len = []
self.cov = []
self.tax = []
for i in range(len(contig_info)):
temp = contig_info[i]
self.name.append(temp.name)
self.len.append(temp.length)
self.cov.append(temp.cov)
self.tax.append(temp.tax)
del contig_info
self.name = np.array(self.name)
self.len = np.array(self.len)
self.cov = np.array(self.cov)
self.tax= np.array(self.tax)
self.norm()
del self.cov
def norm(self):
self.seq_map = self.seq_map.tocoo()
_map_row = self.seq_map.row
_map_col = self.seq_map.col
_map_data = self.seq_map.data
_map_coor = list(zip(_map_row , _map_col , _map_data))
coeff = self.norm_result[0:4]
self.seq_map = self.seq_map.tolil()
self.seq_map = self.seq_map.astype(np.float)
for x,y,d in _map_coor:
l1 = self.len[x]
l2 = self.len[y]
l = (log(l1*l2)-self.norm_result[4])/self.norm_result[5]
c1 = self.cov[x]
c2 = self.cov[y]
c = (log(c1*c2)-self.norm_result[6])/self.norm_result[7]
d_norm = d/exp(coeff[0] + coeff[1] * l + coeff[2]* c)
if d_norm > self.norm_result[3]:
self.seq_map[x , y] = d_norm
else:
self.seq_map[x , y] = 0
del _map_row, _map_col, _map_data, _map_coor