forked from openvinotoolkit/training_extensions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemplate.yaml
68 lines (68 loc) · 1.58 KB
/
template.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
name: person-vehicle-bike-detection-2002
domain: Object Detection
problem: Person Vehicle Bike Detection
framework: OTEDetection v2.9.1
summary: Person Vehicle Bike Detection based on MobileNetV2 (SSD).
annotation_format: COCO
initial_weights: snapshot.pth
dependencies:
- sha256: 23d2ba1282bc1a0072e9d9737f969c1becab51bc65b235ca586a22756e260a91
size: 14937174
source: https://download.01.org/opencv/openvino_training_extensions/models/object_detection/v2/vehicle-person-bike-detection-2002-1.pth
destination: snapshot.pth
- source: ../../../../../ote/tools/train.py
destination: train.py
- source: ../../../../../ote/tools/eval.py
destination: eval.py
- source: ../../../../../ote/tools/export.py
destination: export.py
- source: ../../../../../ote/tools/compress.py
destination: compress.py
- source: ../../../../../ote
destination: packages/ote
- source: ../../requirements.txt
destination: requirements.txt
dataset_requirements:
classes:
- vehicle
- person
- non-vehicle
max_nodes: 1
training_target:
- CPU
- GPU
inference_target:
- CPU
- iGPU
- VPU
hyper_parameters:
basic:
batch_size: 30
base_learning_rate: 0.05
epochs: 20
output_format:
onnx:
default: true
openvino:
default: true
input_format: BGR
optimisations:
nncf_quantization:
config: compression_config.json
default: false
metrics:
- display_name: Size
key: size
unit: Mp
value: 1.84
- display_name: Complexity
key: complexity
unit: GFLOPs
value: 3.3
- display_name: mAP @ [IoU=0.50:0.95]
key: map
unit: '%'
value: 24.8
gpu_num: 4
tensorboard: true
config: model.py