Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MM JOSE Review - Individual Glacier Surface Velocity Analysis #42

Open
mikemorris12 opened this issue Jan 24, 2025 · 0 comments
Open

MM JOSE Review - Individual Glacier Surface Velocity Analysis #42

mikemorris12 opened this issue Jan 24, 2025 · 0 comments

Comments

@mikemorris12
Copy link

  • Typo when describing the distribution plots: “Plotting a histogram of vx, vy, and v we see that they both have Gaussian distributions…” The list should not include “v” since it does not follow a Gaussian distribution, as described in the proceeding sentences.
  • There is an error regarding the calculation of mean speed (velocity magnitude) and speed anomalies (https://e-marshall.github.io/itslive/ind_glacier_analysis.html#calculating-velocity-anomalies):
    o Because the magnitude of a vector is a nonlinear function of its components, speed should be calculated before averaging the components. Average speed cannot be calculated from averaged components – averaging must be done last.
    o The statement “Note that if we tried to compute the magnitude of velocity anomalies, they would all be positive because magnitude is a scalar quantity. Thus, this would show us the magnitude of the anomaly’s deviation from the mean but not the direction. To discern whether a magnitude of velocity anomaly is positive or negative, we would need to examine the signs of the velocity component anomalies.” is not true. It doesn’t matter that speed is a positive definite quantity. A speed anomaly will be negative if the value is less than the mean.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant