-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrelative_confidence_interval.py
245 lines (212 loc) · 6.81 KB
/
relative_confidence_interval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
"""Compares several ways for calculating confidence interval (CI)
of the relative difference of two sample means:
- naive (and also wrong) -- absolute CI divided by control mean.
- delta -- relative CI with delta method.
- logdelta -- also delta method, only applied to log-transformed ratio.
- fieller -- Fieller's confidence interval.
The script does the following:
- Simulates many experiments to generate pairs of samples (AA or AB).
- Calculates proportions of samples where CI does not include zero
(type I error or statistical power).
- Calculates true confidence level and it's quantiles
(since we know the true parameter value).
Usage:
```
python relative_confidence_interval.py > results.txt
```
Links:
- https://en.wikipedia.org/wiki/Delta_method
- https://en.wikipedia.org/wiki/Fieller%27s_theorem
- https://github.com/cran/mratios/blob/master/R/ttestratio.R
"""
from collections.abc import Callable
import numpy as np
from numpy.typing import ArrayLike
import pandas as pd
from scipy import stats
import tqdm
RANDOM_SEED = 42
N_EXPERIMENTS = 10000
CONTROL_SIZE = 1000
TREATMENT_SIZE = CONTROL_SIZE
TRUE_CONTROL_MEAN = 5
TRUE_RELATIVE_DIFF = 0.3
TRUE_TREATMENT_MEAN = TRUE_CONTROL_MEAN * (1 + TRUE_RELATIVE_DIFF)
# Sample from skewed negative binomial distribution.
SAMPLE_DISTR = 'negative_binomial'
SHAPE = 0.2
SAMPLE_CONTROL_PARAMS = {
'n': SHAPE,
'p': SHAPE / (SHAPE + TRUE_CONTROL_MEAN),
}
SAMPLE_TREATMENT_PARAMS = {
'n': SHAPE,
'p': SHAPE / (SHAPE + TRUE_TREATMENT_MEAN),
}
# Sample sizes from poisson distibution.
SIZE_DISTR = 'poisson'
SIZE_CONTROL_PARAMS = {'lam': CONTROL_SIZE}
SIZE_TREATMENT_PARAMS = {'lam': TREATMENT_SIZE}
def calc_experiment(
sample_distr: Callable,
sample_control_params: dict,
sample_treatment_params: dict,
size_distr: Callable,
size_control_params: dict,
size_treatment_params: dict,
) -> dict:
control = sample_distr(
**sample_control_params,
size=size_distr(**size_control_params),
)
treatment = sample_distr(
**sample_treatment_params,
size=size_distr(**size_treatment_params),
)
mean1 = np.mean(treatment)
mean2 = np.mean(control)
mean1_sq = mean1 * mean1
mean2_sq = mean2 * mean2
n1 = len(treatment)
n2 = len(control)
vn1 = np.var(treatment, ddof=1) / n1
vn2 = np.var(control, ddof=1) / n2
ratio = mean1 / mean2
rel_diff = ratio - 1
abs_ppf = stats.t.ppf(
q=0.975,
df=(vn1 + vn2)**2 / (vn1**2 / (n1 - 1) + vn2**2 / (n2 - 1)),
)
naive_lower, naive_upper = (
rel_diff
+ np.array([-abs_ppf, abs_ppf]) * np.sqrt(vn1 + vn2) / mean2
)
cv1_sq = vn1 / mean1_sq
cv2_sq = vn2 / mean2_sq
scale = np.sqrt(cv1_sq + cv2_sq)
rel_ppf = stats.t.ppf(
q=0.975,
df=(cv1_sq + cv2_sq)**2 / (cv1_sq**2 / (n1 - 1) + cv2_sq**2 / (n2 - 1)),
)
t = np.array([-rel_ppf, rel_ppf])
delta_lower, delta_upper = ratio * (1 + t * scale) - 1
logdelta_lower, logdelta_upper = ratio * np.exp(t * scale) - 1
rel_ppf_sq = rel_ppf * rel_ppf
radic = cv1_sq + cv2_sq - rel_ppf_sq * cv1_sq * cv2_sq
denom = 1 - rel_ppf_sq * cv2_sq
fieller_lower, fieller_upper = ratio * (1 + t * np.sqrt(radic)) / denom - 1
return {
'naive_lower': naive_lower,
'naive_upper': naive_upper,
'delta_lower': delta_lower,
'delta_upper': delta_upper,
'logdelta_lower': logdelta_lower,
'logdelta_upper': logdelta_upper,
'fieller_lower': fieller_lower,
'fieller_upper': fieller_upper,
}
def null_rejected(
lower: ArrayLike,
upper: ArrayLike,
) -> dict:
x = (lower > 0) | (upper < 0)
x_lower, x_upper = (
stats.binomtest(k=np.sum(x), n=len(x), p=0.05)
.proportion_ci(method='wilsoncc')
)
return {
'mean': np.mean(x),
'conf_int': f'({round(x_lower, 4)}, {round(x_upper, 4)})',
}
def true_param_location(
lower: ArrayLike,
upper: ArrayLike,
true_param_value: float,
) -> dict:
x = (lower < true_param_value) & (true_param_value < upper)
x_lower, x_upper = (
stats.binomtest(k=np.sum(x), n=len(x), p=0.05)
.proportion_ci(method='wilsoncc')
)
return {
'conf_level': x.mean(),
'conf_level_ci': f'({round(x_lower, 4)}, {round(x_upper, 4)})',
'quantiles': (
f'({np.mean(true_param_value <= lower)}'
f', {np.mean(true_param_value < upper)})'
),
}
if __name__ == '__main__':
rng = np.random.default_rng(RANDOM_SEED)
print('AA experiments:')
aa_data = pd.DataFrame(
calc_experiment(
sample_distr=getattr(rng, SAMPLE_DISTR),
sample_control_params=SAMPLE_CONTROL_PARAMS,
sample_treatment_params=SAMPLE_CONTROL_PARAMS,
size_distr=getattr(rng, SIZE_DISTR),
size_control_params=SIZE_CONTROL_PARAMS,
size_treatment_params=SIZE_TREATMENT_PARAMS,
)
for i in tqdm.tqdm(range(N_EXPERIMENTS))
)
print(aa_data.to_string(max_rows=10))
print('\nType I error:')
print(
pd.DataFrame({
ci: null_rejected(
lower=aa_data[f'{ci}_lower'],
upper=aa_data[f'{ci}_upper'],
)
for ci in ['naive', 'delta', 'logdelta', 'fieller']
})
.transpose()
)
print('\nTrue confidence levels:')
print(
pd.DataFrame({
ci: true_param_location(
lower=aa_data[f'{ci}_lower'],
upper=aa_data[f'{ci}_upper'],
true_param_value=0,
)
for ci in ['naive', 'delta', 'logdelta', 'fieller']
})
.transpose()
)
print('\nAB experiments:')
ab_data = pd.DataFrame(
calc_experiment(
sample_distr=getattr(rng, SAMPLE_DISTR),
sample_control_params=SAMPLE_CONTROL_PARAMS,
sample_treatment_params=SAMPLE_TREATMENT_PARAMS,
size_distr=getattr(rng, SIZE_DISTR),
size_control_params=SIZE_CONTROL_PARAMS,
size_treatment_params=SIZE_TREATMENT_PARAMS,
)
for i in tqdm.tqdm(range(N_EXPERIMENTS))
)
print(ab_data.to_string(max_rows=10))
print('\nStatistical power:')
print(
pd.DataFrame({
ci: null_rejected(
lower=ab_data[f'{ci}_lower'],
upper=ab_data[f'{ci}_upper'],
)
for ci in ['naive', 'delta', 'logdelta', 'fieller']
})
.transpose()
)
print('\nTrue confidence levels:')
print(
pd.DataFrame({
ci: true_param_location(
lower=ab_data[f'{ci}_lower'],
upper=ab_data[f'{ci}_upper'],
true_param_value=TRUE_RELATIVE_DIFF,
)
for ci in ['naive', 'delta', 'logdelta', 'fieller']
})
.transpose()
)