forked from robcarver17/pysystemtrade
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathforecast_scale_cap.py
519 lines (402 loc) · 16.6 KB
/
forecast_scale_cap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
from copy import copy
import numpy as np
import pandas as pd
from sysdata.config.configdata import Config
from systems.basesystem import ALL_KEYNAME
from systems.stage import SystemStage
from systems.system_cache import input, dont_cache, diagnostic, output
from syscore.genutils import str2Bool
from syscore.objects import resolve_function
class ForecastScaleCap(SystemStage):
"""
Stage for scaling and capping
This is a 'switching' class which selects either the fixed or the
estimated flavours
"""
@property
def name(self):
return "forecastScaleCap"
@output()
def get_capped_forecast(
self, instrument_code: str, rule_variation_name: str
) -> pd.Series:
"""
Return the capped, scaled, forecast
KEY OUTPUT
:param instrument_code:
:type str:
:param rule_variation_name:
:type str: name of the trading rule variation
:returns: Tx1 pd.DataFrame, same size as forecast
>>> from systems.tests.testdata import get_test_object_futures_with_rules
>>> from systems.basesystem import System
>>> (rules, rawdata, data, config)=get_test_object_futures_with_rules()
>>> config.forecast_cap=0.2
>>> system=System([rawdata, rules, ForecastScaleCapFixed()], data, config)
>>> system.forecastScaleCap.get_capped_forecast("EDOLLAR", "ewmac8").tail(2)
ewmac8
2015-12-10 -0.190583
2015-12-11 0.200000
"""
self.log.debug(
"Calculating capped forecast for %s %s"
% (instrument_code, rule_variation_name),
instrument_code=instrument_code,
)
scaled_forecast = self.get_scaled_forecast(instrument_code, rule_variation_name)
upper_cap = self.get_forecast_cap()
lower_floor = self.get_forecast_floor()
capped_scaled_forecast = scaled_forecast.clip(
upper=upper_cap, lower=lower_floor
)
return capped_scaled_forecast
@diagnostic()
def get_scaled_forecast(self, instrument_code, rule_variation_name):
"""
Return the scaled forecast
:param instrument_code:
:type str:
:param rule_variation_name:
:type str: name of the trading rule variation
:returns: Tx1 pd.DataFrame, same size as forecast
>>> from systems.tests.testdata import get_test_object_futures_with_rules
>>> from systems.basesystem import System
>>> (rules, rawdata, data, config)=get_test_object_futures_with_rules()
>>> system=System([rawdata, rules, ForecastScaleCapFixed()], data, config)
>>> system.forecastScaleCap.get_scaled_forecast("EDOLLAR", "ewmac8").tail(2)
ewmac8
2015-12-10 -0.190583
2015-12-11 0.871231
"""
raw_forecast = self.get_raw_forecast(instrument_code, rule_variation_name)
forecast_scalar = self.get_forecast_scalar(
instrument_code, rule_variation_name
) # will either be a scalar or a timeseries
scaled_forecast = raw_forecast * forecast_scalar
return scaled_forecast
@input
def get_raw_forecast(
self, instrument_code: str, rule_variation_name: str
) -> pd.Series:
"""
Convenience method as we use the raw forecast several times
:param instrument_code:
:type str:
:param rule_variation_name:
:type str: name of the trading rule variation
:returns: Tx1 pd.DataFrame, same size as forecast
>>> from systems.tests.testdata import get_test_object_futures_with_rules
>>> from systems.basesystem import System
>>> (rules, rawdata, data, config)=get_test_object_futures_with_rules()
>>> system=System([rawdata, rules, ForecastScaleCapFixed()], data, config)
>>> system.forecastScaleCap.get_raw_forecast("EDOLLAR","ewmac8").tail(2)
ewmac8
2015-12-10 -0.035959
2015-12-11 0.164383
"""
raw_forecast = self.rules_stage.get_raw_forecast(
instrument_code, rule_variation_name
)
return raw_forecast
@property
def rules_stage(self):
return self.parent.rules
@dont_cache
def get_forecast_scalar(
self, instrument_code: str, rule_variation_name: str
) -> pd.Series:
if self._use_estimated_weights():
forecast_scalar = self._get_forecast_scalar_estimated(
instrument_code, rule_variation_name
)
else:
forecast_scalar = self._get_forecast_scalar_fixed_as_series(
instrument_code, rule_variation_name
)
return forecast_scalar
@dont_cache
def _use_estimated_weights(self) -> bool:
return str2Bool(self.config.use_forecast_scale_estimates)
@property
def config(self) -> Config:
return self.parent.config
# protected in cache as slow to estimate
@diagnostic(protected=True)
def _get_forecast_scalar_estimated(
self, instrument_code: str, rule_variation_name: str
) -> pd.Series:
"""
Get the scalar to apply to raw forecasts
If not cached, these are estimated from past forecasts
If configuration variable pool_forecasts_for_scalar is "True", then we
do this across instruments.
:param instrument_code:
:type str:
:param rule_variation_name:
:type str: name of the trading rule variation
:returns: float
>>> from systems.tests.testdata import get_test_object_futures_with_rules
>>> from systems.basesystem import System
>>> (rules, rawdata, data, config)=get_test_object_futures_with_rules()
>>> system1=System([rawdata, rules, ForecastScaleCapEstimated()], data, config)
>>>
>>> ## From default
>>> system1.forecastScaleCap.get_forecast_scalar("EDOLLAR", "ewmac8").tail(3)
scale_factor
2015-12-09 5.849888
2015-12-10 5.850474
2015-12-11 5.851091
>>> system1.forecastScaleCap.get_capped_forecast("EDOLLAR", "ewmac8").tail(3)
ewmac8
2015-12-09 0.645585
2015-12-10 -0.210377
2015-12-11 0.961821
>>>
>>> ## From config
>>> scale_config=dict(pool_instruments=False)
>>> config.forecast_scalar_estimate=scale_config
>>> system3=System([rawdata, rules, ForecastScaleCapEstimated()], data, config)
>>> system3.forecastScaleCap.get_forecast_scalar("EDOLLAR", "ewmac8").tail(3)
scale_factor
2015-12-09 5.652174
2015-12-10 5.652833
2015-12-11 5.653444
>>>
"""
# Get some useful stuff from the config
forecast_scalar_config = copy(self.config.forecast_scalar_estimate)
instrument_code_to_pass = _get_instrument_code_depending_on_pooling_status(
instrument_code=instrument_code,
forecast_scalar_config=forecast_scalar_config,
)
scaling_factor = self._get_forecast_scalar_estimated_from_instrument_code(
instrument_code=instrument_code_to_pass,
rule_variation_name=rule_variation_name,
forecast_scalar_config=forecast_scalar_config,
)
forecast = self.get_raw_forecast(instrument_code, rule_variation_name)
forecast_scalar = scaling_factor.reindex(forecast.index, method="ffill")
return forecast_scalar
# protected in cache as slow to estimate
@diagnostic(protected=True)
def _get_forecast_scalar_estimated_from_instrument_code(
self,
instrument_code: str,
rule_variation_name: str,
forecast_scalar_config: dict,
) -> pd.Series:
"""
Get the scalar to apply to raw forecasts
If not cached, these are estimated from past forecasts
:param instrument_code: instrument code, or ALL_KEYNAME if pooling
:type str:
:param rule_variation_name:
:type str: name of the trading rule variation
:param forecast_scalar_config:
:type dict: relevant part of the config
:returns: float
"""
# The config contains 'func' and some other arguments
# we turn func which could be a string into a function, and then
# call it with the other ags
cs_forecasts = self._get_cross_sectional_forecasts_for_instrument(
instrument_code, rule_variation_name
)
scalar_function = resolve_function(forecast_scalar_config.pop("func"))
# an example of a scaling function is sysquant.estimators.forecast_scalar.forecast_scalar
# must return thing the same size as cs_forecasts
# This we get from here to avoid possible inconsistency
target_abs_forecast = self.target_abs_forecast()
scaling_factor = scalar_function(
cs_forecasts,
target_abs_forecast=target_abs_forecast,
**forecast_scalar_config,
)
return scaling_factor
@dont_cache
def target_abs_forecast(self) -> float:
return self.config.average_absolute_forecast
@diagnostic()
def _get_cross_sectional_forecasts_for_instrument(
self, instrument_code: str, rule_variation_name: str
) -> pd.DataFrame:
"""
instrument_list contains multiple things, might pool everything across
all instruments
"""
if instrument_code == ALL_KEYNAME:
# pool data across all instruments using this trading rule
instrument_list = self._list_of_instruments_for_trading_rule(
rule_variation_name
)
else:
## not pooled
instrument_list = [instrument_code]
self.log.debug(
"Getting cross sectional forecasts for scalar calculation for %s over %s"
% (rule_variation_name, ", ".join(instrument_list))
)
forecast_list = [
self.get_raw_forecast(instrument_code, rule_variation_name)
for instrument_code in instrument_list
]
cs_forecasts = pd.concat(forecast_list, axis=1)
cs_forecasts.columns = instrument_list
return cs_forecasts
@diagnostic()
def _list_of_instruments_for_trading_rule(self, rule_variation_name: str) -> list:
"""
Return the list of instruments associated with a given rule
If we don't have a combForecast this will be all of our instruments
:param rule_variation_name:
:return: list
"""
instrument_list = self.parent.get_instrument_list()
instruments_with_rule = [
instrument_code
for instrument_code in instrument_list
if rule_variation_name in self._get_trading_rule_list(instrument_code)
]
if len(instruments_with_rule) == 0:
return instrument_list
else:
return instruments_with_rule
@input
def _get_trading_rule_list(self, instrument_code: str) -> list:
"""
Get a list of trading rules which apply to a particular instrument
:param instrument_code:
:return: list of trading rules
"""
try:
getattr(self.parent, "combForecast")
except AttributeError:
return []
else:
return self.comb_forecast_stage.get_trading_rule_list(instrument_code)
@property
def comb_forecast_stage(self):
# no use of -> as would cause circular import
return self.parent.combForecast
@diagnostic()
def _get_forecast_scalar_fixed_as_series(
self, instrument_code: str, rule_variation_name: str
) -> pd.Series:
"""
Get the scalar to apply to raw forecasts
In this simple version it's the same for all instruments, and fixed
We get the scalars from: (a) configuration file in parent system
(b) or if missing: uses the scalar from systems.defaults.py
:param instrument_code:
:type str:
:param rule_variation_name:
:type str: name of the trading rule variation
:returns: Series
"""
scalar = self._get_forecast_scalar_fixed(
instrument_code=instrument_code, rule_variation_name=rule_variation_name
)
raw_forecast = self.get_raw_forecast(
instrument_code=instrument_code, rule_variation_name=rule_variation_name
)
forecast_scalar = pd.Series(
np.full(raw_forecast.shape[0], scalar), index=raw_forecast.index
)
return forecast_scalar
@diagnostic()
def _get_forecast_scalar_fixed(
self, instrument_code: str, rule_variation_name: str
) -> pd.Series:
"""
Get the scalar to apply to raw forecasts
In this simple version it's the same for all instruments, and fixed
We get the scalars from: (a) configuration file in parent system
(b) or if missing: uses the scalar from systems.defaults.py
:param instrument_code:
:type str:
:param rule_variation_name:
:type str: name of the trading rule variation
:returns: float
>>> from systems.tests.testdata import get_test_object_futures_with_rules
>>> from systems.basesystem import System
>>> (rules, rawdata, data, config)=get_test_object_futures_with_rules()
>>> system1=System([rawdata, rules, ForecastScaleCapFixed()], data, config)
>>>
>>> ## From config
>>> system1.forecastScaleCap.get_forecast_scalar("EDOLLAR", "ewmac8")
5.3
>>>
>>> ## default
>>> unused=config.trading_rules['ewmac8'].pop('forecast_scalar')
>>> system3=System([rawdata, rules, ForecastScaleCapFixed()], data, config)
>>> system3.forecastScaleCap.get_forecast_scalar("EDOLLAR", "ewmac8")
1.0
>>>
>>> ## other config location
>>> setattr(config, 'forecast_scalars', dict(ewmac8=11.0))
>>> system4=System([rawdata, rules, ForecastScaleCapFixed()], data, config)
>>> system4.forecastScaleCap.get_forecast_scalar("EDOLLAR", "ewmac8")
11.0
"""
config = self.config
try:
scalar = config.trading_rules[rule_variation_name]["forecast_scalar"]
except:
try:
# can also put somewhere else ...
scalar = config.forecast_scalars[rule_variation_name]
except:
# just one global default
scalar = config.get_element("forecast_scalar")
return scalar
@diagnostic()
def get_forecast_cap(self) -> float:
"""
Get forecast cap
We get the cap from:
(a) configuration object in parent system
(c) or if missing: uses the forecast_cap from systems.default.py
:returns: float
>>> from systems.tests.testdata import get_test_object_futures_with_rules
>>> from systems.basesystem import System
>>> (rules, rawdata, data, config)=get_test_object_futures_with_rules()
>>> system=System([rawdata, rules, ForecastScaleCapFixed()], data, config)
>>>
>>> ## From config
>>> system.forecastScaleCap.get_forecast_cap()
21.0
>>>
>>> ## default
>>> del(config.forecast_cap)
>>> system3=System([rawdata, rules, ForecastScaleCapFixed()], data, config)
>>> system3.forecastScaleCap.get_forecast_cap()
20.0
"""
return self.config.forecast_cap
@diagnostic()
def get_forecast_floor(self) -> float:
"""
Get forecast floor
We get the cap from:
(a) configuration object in parent system
(c) or if missing: uses the the cap with a minus sign in front of it
:returns: float
"""
forecast_cap = self.get_forecast_cap()
minus_forecast_cap = -forecast_cap
forecast_floor = getattr(self.config, "forecast_floor", minus_forecast_cap)
return forecast_floor
def _get_instrument_code_depending_on_pooling_status(
instrument_code: str, forecast_scalar_config: dict
) -> str:
# this determines whether we pool or not
pool_instruments = str2Bool(forecast_scalar_config.pop("pool_instruments"))
if pool_instruments:
# pooled, same for all instruments
instrument_code_to_pass = ALL_KEYNAME
else:
instrument_code_to_pass = copy(instrument_code)
return instrument_code_to_pass
if __name__ == "__main__":
import doctest
doctest.testmod()