This repository has been archived by the owner on Oct 18, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbudget.py
60 lines (48 loc) · 2.25 KB
/
budget.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#! python3
#budget.py
#
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
def split_withdrawl(record):
'''splits withdrawl value by 2 if split_value is split
Returns: the Withdrawl series
'''
if record['Split_Value'] == 'split':
return record['Withdrawl']/2
return record['Withdrawl']
def subtract_returns(record):
return record['Withdrawl']-record['Deposit']
#read master records, parse dates into datetime objects
df = pd.read_csv(r'./master.csv', parse_dates=['Date'], header=None,
names=['Date','Description','Withdrawl','Deposit','Account',
'Category','Tag','Split_Value'])
#get rid of transfers and deposits
#pandas cannot use 'and', must use & compares boolean lists.
df = df[(df.Category != 'Transfer') & (df.Category != 'Deposit')]
df = df.set_index(df.Date).sort_index() #set index to the date and sort
#split withdrawls, .apply passes the columns of df when axis=1
df.Withdrawl = df.apply(split_withdrawl, axis=1)
df.Withdrawl = df.apply(subtract_returns, axis=1)
#group records by month and category, return a sum of each group.
monthlyRecord = df.groupby([pd.TimeGrouper('M', label='right'),
df.Category]).agg(np.sum)
#send months from row index to the column index and fill missing values.
monthlyRecord = monthlyRecord.unstack(level=0).fillna(0)
#rename columns using set_levels.
monthlyRecord.columns = monthlyRecord.columns.set_levels([['Withdrawl',
'Deposit'],['Dec 2015', 'Jan 2016', 'Feb 2016', 'March 2016',
'April 2016','May 2016','June 2016']])
monthlyRecord.Withdrawl.transpose().plot(kind='barh', colormap='Paired',
stacked=True)
plt.axis(xmin=0)
plt.legend(loc='upper center', bbox_to_anchor=(0.65,1.10), ncol=5,
fancybox=True, shadow=True)
#find monthly total for each category and save to new dataframe.
totals = monthlyRecord.sum().to_frame('Totals')
totals = totals.unstack()
#save to html.
with open('.//Analysis.html', 'w') as f:
f.write('<img src="Budget_May.png" width="980px"></img>')
monthlyRecord.Withdrawl.to_html(f)
totals.to_html(f)