-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexport-whisper-onnx.py
175 lines (124 loc) · 4.92 KB
/
export-whisper-onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import sys
import os
import torch
import shutil
from timeit import default_timer as timer
from model import Whisper, ModelDimensions
torch.manual_seed(0)
def start():
print("Using PyTorch version: {}\n".format(torch.__version__))
if len(sys.argv) <= 1:
print("Usage: python export-whisper-onnx.py whisper-model-name [--export-fp16] [--export-fp16-mixed]")
exit(0)
modelName = sys.argv[1]
validModelNames = ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large", "large-v1", "large-v2", "large-v3", "large-v3-turbo"]
if not modelName in validModelNames:
print("Error: model name must be one of {}".format(", ".join(validModelNames)))
exit(1)
exportFP16 = '--export-fp16' in sys.argv
exportFP16Mixed = '--export-fp16-mixed' in sys.argv
startTime = timer()
print("")
print("Loading PyTorch model..")
checkpoint = torch.load("pytorch-models/{}.pt".format(modelName), map_location=torch.device('cpu'))
modelDims = ModelDimensions(**checkpoint["dims"])
whisper = Whisper(modelDims, modelName)
whisper.load_state_dict(checkpoint["model_state_dict"])
whisper = whisper.to("cpu")
batchSize = 1
audioEncoder = whisper.encoder
audioEncoderRandomInputs = torch.randn(batchSize, modelDims.n_mels, modelDims.n_audio_ctx * 2)
encodedFeatures = whisper.encoder(audioEncoderRandomInputs)
outputDir = "onnx-models/{}".format(modelName)
shutil.rmtree(outputDir, ignore_errors = True)
os.makedirs(outputDir, exist_ok=True)
outputEncoderFilename = "{}/encoder.onnx".format(outputDir)
outputDecoderFilename = "{}/decoder.onnx".format(outputDir)
opset_version = 17
print("")
print("Exporting audio encoder..")
torch.onnx.export(
audioEncoder,
audioEncoderRandomInputs,
outputEncoderFilename,
input_names=["mel"],
output_names=["output"],
opset_version=opset_version,
verbose=True)
print("Exporting text decoder..")
textDecoder = whisper.decoder
tokens = torch.tensor([[0]], dtype=torch.int64)
kvCache = torch.from_numpy(whisper.new_kv_cache(batchSize, 1))
offset = 0
audioDecoderInputs = (tokens, encodedFeatures, kvCache, offset)
torch.onnx.export(
textDecoder,
audioDecoderInputs,
outputDecoderFilename,
input_names=["tokens", "audio_features", "kv_cache", "offset"],
output_names=["logits", "output_kv_cache", "cross_attention_qks"],
dynamic_axes={
"tokens": [0, 1],
"audio_features": [0],
"kv_cache": [1, 2],
"output_kv_cache": [1, 2],
"cross_attention_qks": [1, 3, 4],
},
opset_version=opset_version,
verbose=True)
if exportFP16:
outputFP16EncoderFilename = "{}/encoder_fp16.onnx".format(outputDir)
outputFP16DecoderFilename = "{}/decoder_fp16.onnx".format(outputDir)
print("")
print("Quantizing encoder to 16-bits..")
import onnx
from onnxconverter_common import float16
onnx.checker.check_model(outputEncoderFilename, full_check = True)
encoderOnnx = onnx.load(outputEncoderFilename)
encoderOnnx_fp16 = float16.convert_float_to_float16(encoderOnnx, keep_io_types=True, disable_shape_infer=True)
onnx.save(encoderOnnx_fp16, outputFP16EncoderFilename)
print("")
print("Quantizing decoder to 16-bits..")
onnx.checker.check_model(outputDecoderFilename, full_check = True)
decoderOnnx = onnx.load(outputDecoderFilename)
decoderOnnx_fp16 = float16.convert_float_to_float16(decoderOnnx, keep_io_types=True, disable_shape_infer=True)
onnx.save(decoderOnnx_fp16, outputFP16DecoderFilename)
if exportFP16Mixed:
outputMixedPrecisionEncoderFilename = "{}/encoder_fp16_mixed.onnx".format(outputDir)
outputMixedPrecisionDecoderFilename = "{}/decoder_fp16_mixed.onnx".format(outputDir)
import onnx
from onnxconverter_common import auto_convert_mixed_precision
import numpy as np
def validate(res1, res2):
for r1, r2 in zip(res1, res2):
if not np.allclose(r1, r2, rtol=0.01, atol=0.1):
return False
return True
print("")
print("Quantizing encoder to 16-bits mixed-precision..")
encoderOnnx = onnx.load("{}/encoder.onnx".format(outputDir))
encoderOnnx_fp16_mixed = auto_convert_mixed_precision(
encoderOnnx,
{
'mel': audioEncoderRandomInputs.detach().numpy()
},
validate_fn=validate,
keep_io_types=True)
onnx.save(encoderOnnx_fp16_mixed, outputMixedPrecisionEncoderFilename.format(outputDir))
print("")
print("Quantizing decoder to 16-bits mixed-precision..")
decoderOnnx = onnx.load("{}/decoder.onnx".format(outputDir))
decoderOnnx_fp16_mixed = auto_convert_mixed_precision(
decoderOnnx,
{
'tokens': tokens.detach().numpy(),
'audio_features': encodedFeatures.detach().numpy(),
'kv_cache': kvCache.detach().numpy(),
'offset': np.array((offset)).astype(np.int64)
},
validate_fn=validate,
keep_io_types=True)
onnx.save(decoderOnnx_fp16_mixed, outputMixedPrecisionDecoderFilename.format(outputDir))
print("")
print("\nTotal export time: {:.2f}s".format(timer() - startTime))
start()