-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathcrypto.c
642 lines (526 loc) · 17.9 KB
/
crypto.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
/*******************************************************************************
*
* Copyright (c) 2011, 2012, 2013, 2014, 2015 Olaf Bergmann (TZI) and others.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* and Eclipse Distribution License v. 1.0 which accompanies this distribution.
*
* The Eclipse Public License is available at http://www.eclipse.org/legal/epl-v10.html
* and the Eclipse Distribution License is available at
* http://www.eclipse.org/org/documents/edl-v10.php.
*
* Contributors:
* Olaf Bergmann - initial API and implementation
* Hauke Mehrtens - memory optimization, ECC integration
*
*******************************************************************************/
#include <stdio.h>
#include "tinydtls.h"
#ifdef HAVE_ASSERT_H
#include <assert.h>
#else
#define assert(x)
#endif
#include "global.h"
#include "dtls_debug.h"
#include "numeric.h"
#include "dtls.h"
#include "crypto.h"
#include "ccm.h"
#include "ecc/ecc.h"
#include "dtls_prng.h"
#include "netq.h"
#include "dtls_mutex.h"
#ifdef WITH_ZEPHYR
LOG_MODULE_DECLARE(TINYDTLS, CONFIG_TINYDTLS_LOG_LEVEL);
#endif /* WITH_ZEPHYR */
#if defined(RIOT_VERSION)
# include <memarray.h>
dtls_handshake_parameters_t handshake_storage_data[DTLS_HANDSHAKE_MAX];
dtls_security_parameters_t security_storage_data[DTLS_SECURITY_MAX];
dtls_handshake_parameters_t handshake_storage_data[DTLS_HANDSHAKE_MAX];
dtls_security_parameters_t security_storage_data[DTLS_SECURITY_MAX];
memarray_t handshake_storage;
memarray_t security_storage;
memarray_t handshake_storage;
memarray_t security_storage;
#endif /* RIOT_VERSION */
#define HMAC_UPDATE_SEED(Context,Seed,Length) \
if (Seed) dtls_hmac_update(Context, (Seed), (Length))
static struct dtls_cipher_context_t cipher_context;
static dtls_mutex_t cipher_context_mutex = DTLS_MUTEX_INITIALIZER;
static struct dtls_cipher_context_t *dtls_cipher_context_get(void)
{
dtls_mutex_lock(&cipher_context_mutex);
return &cipher_context;
}
static void dtls_cipher_context_release(void)
{
dtls_mutex_unlock(&cipher_context_mutex);
}
#if !(defined (WITH_CONTIKI)) && !(defined (RIOT_VERSION))
void crypto_init(void)
{
}
static dtls_handshake_parameters_t *dtls_handshake_malloc(void) {
return malloc(sizeof(dtls_handshake_parameters_t));
}
static void dtls_handshake_dealloc(dtls_handshake_parameters_t *handshake) {
free(handshake);
}
static dtls_security_parameters_t *dtls_security_malloc(void) {
return malloc(sizeof(dtls_security_parameters_t));
}
static void dtls_security_dealloc(dtls_security_parameters_t *security) {
free(security);
}
#elif defined (WITH_CONTIKI) /* WITH_CONTIKI */
#include "memb.h"
MEMB(handshake_storage, dtls_handshake_parameters_t, DTLS_HANDSHAKE_MAX);
MEMB(security_storage, dtls_security_parameters_t, DTLS_SECURITY_MAX);
void crypto_init(void) {
memb_init(&handshake_storage);
memb_init(&security_storage);
}
static dtls_handshake_parameters_t *dtls_handshake_malloc(void) {
return memb_alloc(&handshake_storage);
}
static void dtls_handshake_dealloc(dtls_handshake_parameters_t *handshake) {
memb_free(&handshake_storage, handshake);
}
static dtls_security_parameters_t *dtls_security_malloc(void) {
return memb_alloc(&security_storage);
}
static void dtls_security_dealloc(dtls_security_parameters_t *security) {
memb_free(&security_storage, security);
}
#elif defined (RIOT_VERSION)
void crypto_init(void) {
memarray_init(&handshake_storage, handshake_storage_data, sizeof(dtls_handshake_parameters_t), DTLS_HANDSHAKE_MAX);
memarray_init(&security_storage, security_storage_data, sizeof(dtls_security_parameters_t), DTLS_SECURITY_MAX);
}
static dtls_handshake_parameters_t *dtls_handshake_malloc(void) {
return memarray_alloc(&handshake_storage);
}
static void dtls_security_dealloc(dtls_security_parameters_t *security) {
memarray_free(&security_storage, security);
}
static dtls_security_parameters_t *dtls_security_malloc(void) {
return memarray_alloc(&security_storage);
}
static void dtls_handshake_dealloc(dtls_handshake_parameters_t *handshake) {
memarray_free(&handshake_storage, handshake);
}
#endif /* WITH_CONTIKI */
dtls_handshake_parameters_t *dtls_handshake_new(void)
{
dtls_handshake_parameters_t *handshake;
handshake = dtls_handshake_malloc();
if (!handshake) {
dtls_crit("can not allocate a handshake struct\n");
return NULL;
}
memset(handshake, 0, sizeof(*handshake));
/* initialize the handshake hash wrt. the hard-coded DTLS version */
dtls_debug("DTLSv12: initialize HASH_SHA256\n");
/* TLS 1.2: PRF(secret, label, seed) = P_<hash>(secret, label + seed) */
/* FIXME: we use the default SHA256 here, might need to support other
hash functions as well */
dtls_hash_init(&handshake->hs_state.hs_hash);
return handshake;
}
void dtls_handshake_free(dtls_handshake_parameters_t *handshake)
{
if (!handshake)
return;
netq_delete_all(&handshake->reorder_queue);
dtls_handshake_dealloc(handshake);
}
dtls_security_parameters_t *dtls_security_new(void)
{
dtls_security_parameters_t *security;
security = dtls_security_malloc();
if (!security) {
dtls_crit("can not allocate a security struct\n");
return NULL;
}
memset(security, 0, sizeof(*security));
security->cipher_index = DTLS_CIPHER_INDEX_NULL;
security->compression = TLS_COMPRESSION_NULL;
return security;
}
void dtls_security_free(dtls_security_parameters_t *security)
{
if (!security)
return;
dtls_security_dealloc(security);
}
size_t
dtls_p_hash(dtls_hashfunc_t h,
const unsigned char *key, size_t keylen,
const unsigned char *label, size_t labellen,
const unsigned char *random1, size_t random1len,
const unsigned char *random2, size_t random2len,
unsigned char *buf, size_t buflen) {
dtls_hmac_context_t hmac;
unsigned char A[DTLS_HMAC_DIGEST_SIZE];
unsigned char tmp[DTLS_HMAC_DIGEST_SIZE];
size_t dlen; /* digest length */
size_t len = 0; /* result length */
(void)h;
dtls_hmac_init(&hmac, key, keylen);
/* calculate A(1) from A(0) == seed */
HMAC_UPDATE_SEED(&hmac, label, labellen);
HMAC_UPDATE_SEED(&hmac, random1, random1len);
HMAC_UPDATE_SEED(&hmac, random2, random2len);
dlen = dtls_hmac_finalize(&hmac, A);
while (len < buflen) {
dtls_hmac_init(&hmac, key, keylen);
dtls_hmac_update(&hmac, A, dlen);
HMAC_UPDATE_SEED(&hmac, label, labellen);
HMAC_UPDATE_SEED(&hmac, random1, random1len);
HMAC_UPDATE_SEED(&hmac, random2, random2len);
dlen = dtls_hmac_finalize(&hmac, tmp);
if ((len + dlen) < buflen) {
memcpy(&buf[len], tmp, dlen);
len += dlen;
}
else {
memcpy(&buf[len], tmp, buflen - len);
break;
}
/* calculate A(i+1) */
dtls_hmac_init(&hmac, key, keylen);
dtls_hmac_update(&hmac, A, dlen);
dtls_hmac_finalize(&hmac, A);
}
/* prevent exposure of sensible data */
memset(&hmac, 0, sizeof(hmac));
memset(tmp, 0, sizeof(tmp));
memset(A, 0, sizeof(A));
return buflen;
}
size_t
dtls_prf(const unsigned char *key, size_t keylen,
const unsigned char *label, size_t labellen,
const unsigned char *random1, size_t random1len,
const unsigned char *random2, size_t random2len,
unsigned char *buf, size_t buflen) {
/* Clear the result buffer */
memset(buf, 0, buflen);
return dtls_p_hash(HASH_SHA256,
key, keylen,
label, labellen,
random1, random1len,
random2, random2len,
buf, buflen);
}
void
dtls_mac(dtls_hmac_context_t *hmac_ctx,
const unsigned char *record,
const unsigned char *packet, size_t length,
unsigned char *buf) {
uint16 L;
dtls_int_to_uint16(L, length);
assert(hmac_ctx);
dtls_hmac_update(hmac_ctx, record +3, sizeof(uint16) + sizeof(uint48));
dtls_hmac_update(hmac_ctx, record, sizeof(uint8) + sizeof(uint16));
dtls_hmac_update(hmac_ctx, L, sizeof(uint16));
dtls_hmac_update(hmac_ctx, packet, length);
dtls_hmac_finalize(hmac_ctx, buf);
}
static size_t
dtls_ccm_encrypt(aes128_ccm_t *ccm_ctx, const unsigned char *src, size_t srclen,
unsigned char *buf,
const unsigned char *nonce,
const unsigned char *aad, size_t la) {
long int len;
(void)src;
assert(ccm_ctx);
len = dtls_ccm_encrypt_message(&ccm_ctx->ctx,
ccm_ctx->tag_length /* M */,
ccm_ctx->l /* L */,
nonce,
buf, srclen,
aad, la);
return len;
}
static size_t
dtls_ccm_decrypt(aes128_ccm_t *ccm_ctx, const unsigned char *src,
size_t srclen, unsigned char *buf,
const unsigned char *nonce,
const unsigned char *aad, size_t la) {
long int len;
(void)src;
assert(ccm_ctx);
len = dtls_ccm_decrypt_message(&ccm_ctx->ctx,
ccm_ctx->tag_length /* M */,
ccm_ctx->l /* L */,
nonce,
buf, srclen,
aad, la);
return len;
}
#ifdef DTLS_PSK
int
dtls_psk_pre_master_secret(unsigned char *key, size_t keylen,
unsigned char *result, size_t result_len) {
unsigned char *p = result;
if (result_len < (2 * (sizeof(uint16) + keylen))) {
return -1;
}
dtls_int_to_uint16(p, keylen);
p += sizeof(uint16);
memset(p, 0, keylen);
p += keylen;
memcpy(p, result, sizeof(uint16));
p += sizeof(uint16);
memcpy(p, key, keylen);
return 2 * (sizeof(uint16) + keylen);
}
#endif /* DTLS_PSK */
#ifdef DTLS_ECC
static void dtls_ec_key_to_uint32(const unsigned char *key, size_t key_size,
uint32_t *result) {
int i;
for (i = (key_size / sizeof(uint32_t)) - 1; i >= 0 ; i--) {
*result = dtls_uint32_to_int(&key[i * sizeof(uint32_t)]);
result++;
}
}
static void dtls_ec_key_from_uint32(const uint32_t *key, size_t key_size,
unsigned char *result) {
int i;
for (i = (key_size / sizeof(uint32_t)) - 1; i >= 0 ; i--) {
dtls_int_to_uint32(result, key[i]);
result += 4;
}
}
/* Build the EC KEY as a ASN.1 positive integer */
/*
* The public EC key consists of two positive numbers. Converting them into
* ASN.1 INTEGER requires removing leading zeros, but special care must be
* taken of the resulting sign. If the first non-zero byte of the 32 byte
* ec-key has bit 7 set (highest bit), the resultant ASN.1 INTEGER would be
* interpreted as a negative number. In order to prevent this, a zero in the
* ASN.1 presentation is prepended if that bit 7 is set.
*/
int dtls_ec_key_asn1_from_uint32(const uint32_t *key, size_t key_size,
uint8_t *buf) {
int i = 0;
uint8_t *lptr;
/* ASN.1 Integer r */
dtls_int_to_uint8(buf, 0x02);
buf += sizeof(uint8);
lptr = buf;
/* Length will be filled in later */
buf += sizeof(uint8);
dtls_ec_key_from_uint32(key, key_size, buf);
/* skip leading 0's */
while (i < (int)key_size && buf[i] == 0) {
++i;
}
assert(i != (int)key_size);
if (i == (int)key_size) {
dtls_alert("ec key is all zero\n");
return 0;
}
if (buf[i] >= 0x80) {
/*
* Preserve unsigned by adding leading 0 (i may go negative which is
* explicitely handled below with the assumption that buf is at least 33
* bytes in size).
*/
--i;
}
if (i > 0) {
/* remove leading 0's */
key_size -= i;
memmove(buf, buf + i, key_size);
} else if (i == -1) {
/* add leading 0 */
memmove(buf +1, buf, key_size);
buf[0] = 0;
key_size++;
}
/* Update the length of positive ASN.1 integer */
dtls_int_to_uint8(lptr, key_size);
return key_size + 2;
}
int dtls_ecdh_pre_master_secret(unsigned char *priv_key,
unsigned char *pub_key_x,
unsigned char *pub_key_y,
size_t key_size,
unsigned char *result,
size_t result_len) {
uint32_t priv[8];
uint32_t pub_x[8];
uint32_t pub_y[8];
uint32_t result_x[8];
uint32_t result_y[8];
assert(key_size == sizeof(priv));
if (result_len < key_size) {
return -1;
}
dtls_ec_key_to_uint32(priv_key, key_size, priv);
dtls_ec_key_to_uint32(pub_key_x, key_size, pub_x);
dtls_ec_key_to_uint32(pub_key_y, key_size, pub_y);
ecc_ecdh(pub_x, pub_y, priv, result_x, result_y);
dtls_ec_key_from_uint32(result_x, key_size, result);
return key_size;
}
void
dtls_ecdsa_generate_key(unsigned char *priv_key,
unsigned char *pub_key_x,
unsigned char *pub_key_y,
size_t key_size) {
uint32_t priv[8];
uint32_t pub_x[8];
uint32_t pub_y[8];
do {
dtls_prng((unsigned char *)priv, key_size);
} while (!ecc_is_valid_key(priv));
ecc_gen_pub_key(priv, pub_x, pub_y);
dtls_ec_key_from_uint32(priv, key_size, priv_key);
dtls_ec_key_from_uint32(pub_x, key_size, pub_key_x);
dtls_ec_key_from_uint32(pub_y, key_size, pub_key_y);
}
/* rfc4492#section-5.4 */
void
dtls_ecdsa_create_sig_hash(const unsigned char *priv_key, size_t key_size,
const unsigned char *sign_hash, size_t sign_hash_size,
uint32_t point_r[9], uint32_t point_s[9]) {
int ret;
uint32_t priv[8];
uint32_t hash[8];
uint32_t randv[8];
dtls_ec_key_to_uint32(priv_key, key_size, priv);
dtls_ec_key_to_uint32(sign_hash, sign_hash_size, hash);
do {
dtls_prng((unsigned char *)randv, key_size);
ret = ecc_ecdsa_sign(priv, hash, randv, point_r, point_s);
} while (ret);
}
void
dtls_ecdsa_create_sig(const unsigned char *priv_key, size_t key_size,
const unsigned char *client_random, size_t client_random_size,
const unsigned char *server_random, size_t server_random_size,
const unsigned char *keyx_params, size_t keyx_params_size,
uint32_t point_r[9], uint32_t point_s[9]) {
dtls_hash_ctx data;
unsigned char sha256hash[DTLS_HMAC_DIGEST_SIZE];
dtls_hash_init(&data);
dtls_hash_update(&data, client_random, client_random_size);
dtls_hash_update(&data, server_random, server_random_size);
dtls_hash_update(&data, keyx_params, keyx_params_size);
dtls_hash_finalize(sha256hash, &data);
dtls_ecdsa_create_sig_hash(priv_key, key_size, sha256hash,
sizeof(sha256hash), point_r, point_s);
}
/* rfc4492#section-5.4 */
int
dtls_ecdsa_verify_sig_hash(const unsigned char *pub_key_x,
const unsigned char *pub_key_y, size_t key_size,
const unsigned char *sign_hash, size_t sign_hash_size,
unsigned char *result_r, unsigned char *result_s) {
uint32_t pub_x[8];
uint32_t pub_y[8];
uint32_t hash[8];
uint32_t point_r[8];
uint32_t point_s[8];
dtls_ec_key_to_uint32(pub_key_x, key_size, pub_x);
dtls_ec_key_to_uint32(pub_key_y, key_size, pub_y);
dtls_ec_key_to_uint32(result_r, key_size, point_r);
dtls_ec_key_to_uint32(result_s, key_size, point_s);
dtls_ec_key_to_uint32(sign_hash, sign_hash_size, hash);
return ecc_ecdsa_validate(pub_x, pub_y, hash, point_r, point_s);
}
int
dtls_ecdsa_verify_sig(const unsigned char *pub_key_x,
const unsigned char *pub_key_y, size_t key_size,
const unsigned char *client_random, size_t client_random_size,
const unsigned char *server_random, size_t server_random_size,
const unsigned char *keyx_params, size_t keyx_params_size,
unsigned char *result_r, unsigned char *result_s) {
dtls_hash_ctx data;
unsigned char sha256hash[DTLS_HMAC_DIGEST_SIZE];
dtls_hash_init(&data);
dtls_hash_update(&data, client_random, client_random_size);
dtls_hash_update(&data, server_random, server_random_size);
dtls_hash_update(&data, keyx_params, keyx_params_size);
dtls_hash_finalize(sha256hash, &data);
return dtls_ecdsa_verify_sig_hash(pub_key_x, pub_key_y, key_size, sha256hash,
sizeof(sha256hash), result_r, result_s);
}
#endif /* DTLS_ECC */
int
dtls_encrypt_params(const dtls_ccm_params_t *params,
const unsigned char *src, size_t length,
unsigned char *buf,
const unsigned char *key, size_t keylen,
const unsigned char *aad, size_t la) {
int ret;
struct dtls_cipher_context_t *ctx = dtls_cipher_context_get();
ctx->data.tag_length = params->tag_length;
ctx->data.l = params->l;
ret = rijndael_set_key_enc_only(&ctx->data.ctx, key, 8 * keylen);
if (ret < 0) {
/* cleanup everything in case the key has the wrong size */
dtls_warn("cannot set rijndael key\n");
goto error;
}
if (src != buf)
memmove(buf, src, length);
ret = dtls_ccm_encrypt(&ctx->data, src, length, buf, params->nonce, aad, la);
error:
dtls_cipher_context_release();
return ret;
}
int
dtls_encrypt(const unsigned char *src, size_t length,
unsigned char *buf,
const unsigned char *nonce,
const unsigned char *key, size_t keylen,
const unsigned char *aad, size_t la)
{
/* For backwards-compatibility, dtls_encrypt_params is called with
* M=8 and L=3. */
const dtls_ccm_params_t params = { nonce, 8, 3 };
return dtls_encrypt_params(¶ms, src, length, buf, key, keylen, aad, la);
}
int
dtls_decrypt_params(const dtls_ccm_params_t *params,
const unsigned char *src, size_t length,
unsigned char *buf,
const unsigned char *key, size_t keylen,
const unsigned char *aad, size_t la)
{
int ret;
struct dtls_cipher_context_t *ctx = dtls_cipher_context_get();
ctx->data.tag_length = params->tag_length;
ctx->data.l = params->l;
ret = rijndael_set_key_enc_only(&ctx->data.ctx, key, 8 * keylen);
if (ret < 0) {
/* cleanup everything in case the key has the wrong size */
dtls_warn("cannot set rijndael key\n");
goto error;
}
if (src != buf)
memmove(buf, src, length);
ret = dtls_ccm_decrypt(&ctx->data, src, length, buf, params->nonce, aad, la);
error:
dtls_cipher_context_release();
return ret;
}
int
dtls_decrypt(const unsigned char *src, size_t length,
unsigned char *buf,
const unsigned char *nonce,
const unsigned char *key, size_t keylen,
const unsigned char *aad, size_t la)
{
/* For backwards-compatibility, dtls_encrypt_params is called with
* M=8 and L=3. */
const dtls_ccm_params_t params = { nonce, 8, 3 };
return dtls_decrypt_params(¶ms, src, length, buf, key, keylen, aad, la);
}