-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
308 lines (258 loc) · 12.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
from typing import Optional, List
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.responses import FileResponse
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
import pandas as pd
import json
# routing of schema validation
from schemamodels.models.basematerialschema import validateAndLog as validate_and_log_base_materials
from schemamodels.models.materialschema import validateAndLog as validate_and_log_materials
from schemamodels.models.componentschema import validateAndLog as validate_and_log_components
from schemamodels.models.completepackagingschema import validateAndLog as validate_and_log_completepackaging
from schemamodels.models.multipackschema import validateAndLog as validate_and_log_multipack
from schemamodels.models.loadcatalogueschema import validateAndLog as validate_and_log_loadcatalogue
from schemamodels.models.loadschema import validateAndLog as validate_and_log_load
# launching the app in terminal type:
# uvicorn main:app --reload
app = FastAPI()
# file routing
"""
async def read_file(file: UploadFile):
# Determine the file extension
file_extension = file.filename.split(".")[-1]
# Read the file based on its extension
if file_extension == "csv":
return pd.read_csv(file.file)
elif file_extension == "json":
return pd.read_json(file.file)
elif file_extension == "xlsx":
return pd.read_excel(file.file)
else:
raise ValueError("Unsupported file format")
"""
async def read_file(file: UploadFile):
# Determine the file extension
file_extension = file.filename.split(".")[-1]
# Read the file based on its extension
if file_extension == "csv":
return pd.read_csv(file.file)
elif file_extension == "json":
json_content = json.load(file.file)
# Check if the JSON content is already an array
if isinstance(json_content, list):
return pd.read_json(json.dumps(json_content))
else:
# Wrap the JSON content in an array
return pd.read_json(json.dumps([json_content]))
elif file_extension == "xlsx":
return pd.read_excel(file.file)
else:
raise HTTPException(status_code=400, detail="Unsupported file format")
# basematerials
@app.post("/basematerials/")
async def upload_base_materials(file: UploadFile = File(...)):
try:
# Read data into a pandas DataFrame
data = await read_file(file)
# Perform schema validation based on the file type
if file.filename.endswith(".csv"):
validation_response = validate_and_log_base_materials(data)
elif file.filename.endswith(".json"):
# Adjust based on the actual validation function for JSON
validation_response = validate_and_log_base_materials(data)
elif file.filename.endswith(".xlsx"):
# Adjust based on the actual validation function for Excel
validation_response = validate_and_log_base_materials(data)
else:
raise ValueError("Unsupported file format")
# Check if any logs have been produced
if validation_response:
# Check if validation_response is an empty array
if validation_response == "[]":
return {"message": "File uploaded and validated successfully!", "log_contents": "Your data appears to be Open 3P compliant!"}
else:
return {"message": "File uploaded with validation errors!", "log_contents": validation_response}
else:
return {"message": "File uploaded and validated successfully!", "log_contents": None}
except Exception as e:
return {"message": f"Error processing file: {str(e)}"}
# materials
@app.post("/materials")
async def upload_materials(file: UploadFile = File(...)):
try:
# Read data into a pandas DataFrame
data = await read_file(file)
# Perform schema validation based on the file type
if file.filename.endswith(".csv"):
validation_response = validate_and_log_materials(data)
elif file.filename.endswith(".json"):
# Adjust based on the actual validation function for JSON
validation_response = validate_and_log_materials(data)
elif file.filename.endswith(".xlsx"):
# Adjust based on the actual validation function for Excel
validation_response = validate_and_log_materials(data)
else:
raise ValueError("Unsupported file format")
# Check if any logs have been produced
if validation_response:
# Check if validation_response is an empty array
if validation_response == "[]":
return {"message": "File uploaded and validated successfully!", "log_contents": "Your data appears to be Open 3P compliant!"}
else:
return {"message": "File uploaded with validation errors!", "log_contents": validation_response}
else:
return {"message": "File uploaded and validated successfully!", "log_contents": None}
except Exception as e:
return {"message": f"Error processing file: {str(e)}"}
# Components
@app.post("/components/")
async def upload_components(file: UploadFile = File(...)):
try:
# Read data into a pandas DataFrame
data = await read_file(file)
# Perform schema validation based on the file type
if file.filename.endswith(".csv"):
validation_response = validate_and_log_components(data)
elif file.filename.endswith(".json"):
# Adjust based on the actual validation function for JSON
validation_response = validate_and_log_components(data)
elif file.filename.endswith(".xlsx"):
# Adjust based on the actual validation function for Excel
validation_response = validate_and_log_components(data)
else:
raise ValueError("Unsupported file format")
# Check if any logs have been produced
if validation_response:
# Check if validation_response is an empty array
if validation_response == "[]":
return {"message": "File uploaded and validated successfully!", "log_contents": "Your data appears to be Open 3P compliant!"}
else:
return {"message": "File uploaded with validation errors!", "log_contents": validation_response}
else:
return {"message": "File uploaded and validated successfully!", "log_contents": None}
except Exception as e:
return {"message": f"Error processing file: {str(e)}"}
# Complete Packaging
@app.post("/completepackaging/")
async def upload_complete_packaging(file: UploadFile = File(...)):
try:
# Read data into a pandas DataFrame
data = await read_file(file)
# Perform schema validation based on the file type
if file.filename.endswith(".csv"):
validation_response = validate_and_log_completepackaging(data)
elif file.filename.endswith(".json"):
# Adjust based on the actual validation function for JSON
validation_response = validate_and_log_completepackaging(data)
elif file.filename.endswith(".xlsx"):
# Adjust based on the actual validation function for Excel
validation_response = validate_and_log_completepackaging(data)
else:
raise ValueError("Unsupported file format")
# Check if any logs have been produced
if validation_response:
# Check if validation_response is an empty array
if validation_response == "[]":
return {"message": "File uploaded and validated successfully!", "log_contents": "Your data appears to be Open 3P compliant!"}
else:
return {"message": "File uploaded with validation errors!", "log_contents": validation_response}
else:
return {"message": "File uploaded and validated successfully!", "log_contents": None}
except Exception as e:
return {"message": f"Error processing file: {str(e)}"}
# Multipack
@app.post("/multipack/")
async def upload_multipack(file: UploadFile = File(...)):
try:
# Read data into a pandas DataFrame
data = await read_file(file)
# Perform schema validation based on the file type
if file.filename.endswith(".csv"):
validation_response = validate_and_log_multipack(data)
elif file.filename.endswith(".json"):
# Adjust based on the actual validation function for JSON
validation_response = validate_and_log_multipack(data)
elif file.filename.endswith(".xlsx"):
# Adjust based on the actual validation function for Excel
validation_response = validate_and_log_multipack(data)
else:
raise ValueError("Unsupported file format")
# Check if any logs have been produced
if validation_response:
# Check if validation_response is an empty array
if validation_response == "[]":
return {"message": "File uploaded and validated successfully!", "log_contents": "Your data appears to be Open 3P compliant!"}
else:
return {"message": "File uploaded with validation errors!", "log_contents": validation_response}
else:
return {"message": "File uploaded and validated successfully!", "log_contents": None}
except Exception as e:
return {"message": f"Error processing file: {str(e)}"}
# Load Catalogue
@app.post("/loadcatalogue/")
async def upload_load_catalogue(file: UploadFile = File(...)):
try:
# Read data into a pandas DataFrame
data = await read_file(file)
# Perform schema validation based on the file type
if file.filename.endswith(".csv"):
validation_response = validate_and_log_loadcatalogue(data)
elif file.filename.endswith(".json"):
# Adjust based on the actual validation function for JSON
validation_response = validate_and_log_loadcatalogue(data)
elif file.filename.endswith(".xlsx"):
# Adjust based on the actual validation function for Excel
validation_response = validate_and_log_loadcatalogue(data)
else:
raise ValueError("Unsupported file format")
# Check if any logs have been produced
if validation_response:
# Check if validation_response is an empty array
if validation_response == "[]":
return {"message": "File uploaded and validated successfully!", "log_contents": "Your data appears to be Open 3P compliant!"}
else:
return {"message": "File uploaded with validation errors!", "log_contents": validation_response}
else:
return {"message": "File uploaded and validated successfully!", "log_contents": None}
except Exception as e:
return {"message": f"Error processing file: {str(e)}"}
# Load
@app.post("/load/")
async def upload_load(file: UploadFile = File(...)):
try:
# Read data into a pandas DataFrame
data = await read_file(file)
# Perform schema validation based on the file type
if file.filename.endswith(".csv"):
validation_response = validate_and_log_load(data)
elif file.filename.endswith(".json"):
# Adjust based on the actual validation function for JSON
validation_response = validate_and_log_load(data)
elif file.filename.endswith(".xlsx"):
# Adjust based on the actual validation function for Excel
validation_response = validate_and_log_load(data)
else:
raise ValueError("Unsupported file format")
# Check if any logs have been produced
if validation_response:
# Check if validation_response is an empty array
if validation_response == "[]":
return {"message": "File uploaded and validated successfully!", "log_contents": "Your data appears to be Open 3P compliant!"}
else:
return {"message": "File uploaded with validation errors!", "log_contents": validation_response}
else:
return {"message": "File uploaded and validated successfully!", "log_contents": None}
except Exception as e:
return {"message": f"Error processing file: {str(e)}"}
origins = [
"http://localhost:5173",
"localhost:5173"
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"]
)