-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcore_env.py
76 lines (55 loc) · 2.35 KB
/
core_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# ================================================================
# MIT License
# Copyright (c) 2021 edwardyehuang (https://github.com/edwardyehuang)
# ================================================================
import os
import tensorflow as tf
from distutils.version import LooseVersion
from iseg.utils.common import set_random_seed, enable_mixed_precision
from iseg.utils.distribution_utils import get_distribution_strategy, shutdown_tpu_system
def common_env_setup(
run_eagerly=False,
gpu_memory_growth=True,
cuda_visible_devices=None,
tpu_name=None,
random_seed=0,
mixed_precision=True,
use_deterministic=True,
num_op_parallelism_threads=-1,
numpy_behavior=False,
soft_device_placement=False,
):
set_random_seed(random_seed)
tf.get_logger().setLevel(0)
print(f"use_deterministic = {use_deterministic}")
if use_deterministic:
if LooseVersion(tf.version.VERSION) < LooseVersion("2.8.0"):
os.environ["TF_DETERMINISTIC_OPS"] = "1"
os.environ["TF_DISABLE_SEGMENT_REDUCTION_OP_DETERMINISM_EXCEPTIONS"] = "1" # For 2.5.0+
else:
tf.config.experimental.enable_op_determinism()
if LooseVersion(tf.version.VERSION) >= LooseVersion("2.5.0"):
os.environ["TF_CUDNN_USE_FRONTEND"] = "1"
if num_op_parallelism_threads is not None and num_op_parallelism_threads > 0:
tf.config.threading.set_inter_op_parallelism_threads(num_op_parallelism_threads)
tf.config.threading.set_intra_op_parallelism_threads(num_op_parallelism_threads)
if soft_device_placement:
tf.config.set_soft_device_placement(soft_device_placement)
tf.config.run_functions_eagerly(run_eagerly)
if run_eagerly and LooseVersion(tf.version.VERSION) >= LooseVersion("2.8.0"):
tf.data.experimental.enable_debug_mode()
strategy = get_distribution_strategy(
gpu_memory_growth,
cuda_visible_devices,
tpu_name is not None,
tpu_name
)
if mixed_precision:
enable_mixed_precision(use_tpu=tpu_name is not None)
if numpy_behavior:
tf.experimental.numpy.experimental_enable_numpy_behavior(True)
print("Enable experimental numpy behavior")
return strategy
def common_env_clean (strategy):
if isinstance(strategy, tf.distribute.TPUStrategy):
shutdown_tpu_system(strategy)