-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsketch_20170406_lora.ino
305 lines (273 loc) · 9.45 KB
/
sketch_20170406_lora.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
// Cayenne LPP Byte definition
// https://github.com/myDevicesIoT/cayenne-docs/blob/master/docs/LORA.md
// Cayenne LPP Payload buildup
// https://hansboksem.wordpress.com/2017/03/06/sending-sensor-data-through-the-things-network-to-cayenne/
// https://github.com/bokse001
// Lora TTN via LMIC and bmp280 code
// https://github.com/galagaking/ttn_nodeworkshop/blob/master/ttn_bmp280_abp.ino
//// https://github.com/rocketscream/Low-Power
//// https://github.com/matthijskooijman/arduino-lmic
/*******************************************************************************
// https://github.com/galagaking/ttn_nodeworkshop/blob/master/ttn_bmp280_abp.ino
* Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
*
* Permission is hereby granted, free of charge, to anyone
* obtaining a copy of this document and accompanying files,
* to do whatever they want with them without any restriction,
* including, but not limited to, copying, modification and redistribution.
* NO WARRANTY OF ANY KIND IS PROVIDED.
*
* This example will send Temperature and Air Pressure
* using frequency and encryption settings matching those of
* the The Things Network. Application will 'sleep' 7x8 seconds (56 seconds)
*
* This uses ABP (Activation-by-personalisation), where a DevAddr and
* Session keys are preconfigured (unlike OTAA, where a DevEUI and
* application key is configured, while the DevAddr and session keys are
* assigned/generated in the over-the-air-activation procedure).
*
*
* Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
* g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
* violated by this sketch when left running for longer)!
* To use this sketch, first register your application and device with
* the things network, to set or generate an AppEUI, DevEUI and AppKey.
* Multiple devices can use the same AppEUI, but each device has its own
* DevEUI and AppKey.
*
* Do not forget to define the radio type correctly in config.h.
*
*******************************************************************************/
#include <avr/sleep.h>
#include <avr/wdt.h>
#include <lmic.h>
#include <hal/hal.h>
#include <SPI.h>
#include "LowPower.h"
#include <SoftwareSerial.h>
#include "i2c.h"
#include "i2c_BMP280.h"
BMP280 bmp280;
#include <Arduino.h>
int sleepcycles = 7; // every sleepcycle will last 8 secs, total sleeptime will be sleepcycles * 8 sec
bool joined = false;
bool sleeping = false;
#define LedPin 2 // pin 13 LED is not used, because it is connected to the SPI port
// This EUI must be in little-endian format, so least-significant-byte
// first. When copying an EUI from ttnctl output, this means to reverse
// the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3,
// 0x70.
static const u1_t DEVEUI[8] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x21, 0x12 };
static const u1_t APPEUI[8] = { 0xCE, 0x42, 0x00, 0xF0, 0x7E, 0xD5, 0xB3, 0x70 };
// This key should be in big endian format (or, since it is not really a
// number but a block of memory, endianness does not really apply). In
// practice, a key taken from ttnctl can be copied as-is.
// The key shown here is the semtech default key.
static const u1_t APPKEY[16] = { 0xA9, 0x7D, 0x21, 0xF7, 0xC9, 0x49, 0x71, 0x61, 0x50, 0x9E, 0xDC, 0xCE, 0xD9, 0xCF, 0x63, 0x32 };
void os_getArtEui (u1_t* buf) {
memcpy(buf, APPEUI, 8);
}
// provide DEVEUI (8 bytes, LSBF)
void os_getDevEui (u1_t* buf) {
memcpy(buf, DEVEUI, 8);
}
// provide APPKEY key (16 bytes)
void os_getDevKey (u1_t* buf) {
memcpy(buf, APPKEY, 16);
}
static osjob_t sendjob;
static osjob_t initjob;
// Pin mapping is hardware specific.
// Pin mapping Doug Larue PCB
const lmic_pinmap lmic_pins = {
.nss = 10,
.rxtx = 0, //LMIC_UNUSED_PIN,
.rst = 0,
.dio = {4, 5, 7},
};
void onEvent (ev_t ev) {
int i,j;
switch (ev) {
case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT"));
break;
case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND"));
break;
case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED"));
break;
case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED"));
break;
case EV_JOINING:
Serial.println(F("EV_JOINING"));
break;
case EV_JOINED:
Serial.println(F("EV_JOINED"));
// Disable link check validation (automatically enabled
// during join, but not supported by TTN at this time).
LMIC_setLinkCheckMode(0);
digitalWrite(LedPin,LOW);
// after Joining a job with the values will be sent.
joined = true;
break;
case EV_RFU1:
Serial.println(F("EV_RFU1"));
break;
case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
// Re-init
os_setCallback(&initjob, initfunc);
break;
case EV_TXCOMPLETE:
sleeping = true;
if (LMIC.dataLen) {
// data received in rx slot after tx
// if any data received, a LED will blink
// this number of times, with a maximum of 10
Serial.print(F("Data Received: "));
Serial.println(LMIC.frame[LMIC.dataBeg],HEX);
i=(LMIC.frame[LMIC.dataBeg]);
// i (0..255) can be used as data for any other application
// like controlling a relay, showing a display message etc.
if (i>10){
i=10; // maximum number of BLINKs
}
for(j=0;j<i;j++){
digitalWrite(LedPin,HIGH);
delay(200);
digitalWrite(LedPin,LOW);
delay(400);
}
}
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
delay(50); // delay to complete Serial Output before Sleeping
// Schedule next transmission
// next transmission will take place after next wake-up cycle in main loop
break;
case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC"));
break;
case EV_RESET:
Serial.println(F("EV_RESET"));
break;
case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F("EV_RXCOMPLETE"));
break;
case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD"));
break;
case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;
default:
Serial.println(F("Unknown event"));
break;
}
}
void do_send(osjob_t* j) {
float temperature,pascal;
//Read sensor vallues from BMP Board
bmp280.awaitMeasurement();
bmp280.getTemperature(temperature);
bmp280.getPressure(pascal);
bmp280.triggerMeasurement();
//Print vallue from the sensor BMP Board
pascal=pascal/100;
pascal = (int) pascal * 10;
Serial.print(" Pressure: ");
Serial.print(pascal);
Serial.print(" Pa; T: ");
temperature = (int) temperature * 10;
Serial.print(temperature);
Serial.println(" C");
// Cayenne LPP Protocal Definition
#define LPP_TEMPERATURE 103 // 0x67 - 103 - 2 bytes, 0.1°C signed
#define LPP_BAROMETRIC_PRESSURE 115 // 0x73 - 115 - 2 bytes 0.1 hPa Unsigned
// Init declaration
int16_t val;
uint8_t channel;
byte buffer[8];
uint8_t cursor = 0;
// set Sensor Barometric Pressure into payload
val = pascal;
channel = 0x04;
buffer[cursor++] = channel;
buffer[cursor++] = LPP_BAROMETRIC_PRESSURE;
buffer[cursor++] = val >> 8;
buffer[cursor++] = val;
// set Sensor Temperature into payload
val = temperature;
channel = 0x05;
buffer[cursor++] = channel;
buffer[cursor++] = LPP_TEMPERATURE;
buffer[cursor++] = val >> 8;
buffer[cursor++] = val;
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {
Serial.println(F("OP_TXRXPEND, not sending"));
} else {
// Prepare upstream data transmission at the next possible time.
LMIC_setTxData2(1, buffer, sizeof(buffer)/sizeof(buffer[0]), 0);
//Serial output of message
Serial.println(F("Sending: "));
for(byte b=0; b<(sizeof(buffer)/sizeof(buffer[0])); b++){
Serial.print(buffer[b]);
}
Serial.println(" Done, on to the next measurement");
}
}//do_send()
// initial job
static void initfunc (osjob_t* j) {
// reset MAC state
LMIC_reset();
// start joining
LMIC_startJoining();
// init done - onEvent() callback will be invoked...
}
void setup() {
Serial.begin(115200);
delay(250);
Serial.println(F("Starting"));
Serial.print("Probe BMP280: ");
if (bmp280.initialize()) Serial.println("Sensor found");
else{
Serial.println("Sensor missing");
while (1) {}
}
// onetime-measure:
bmp280.setEnabled(0);
bmp280.triggerMeasurement();
// if LED is connected to pin 10, it has to be defined before any SPI initialization else
// it will be used as SS (Slave Select) and controlled by the SPI module
pinMode(LedPin, OUTPUT);
LMIC_setClockError(MAX_CLOCK_ERROR * 10 / 100);
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
os_setCallback(&initjob, initfunc);
LMIC_reset();
}// setup()
unsigned long time;
void loop(){
// start OTAA JOIN
if (joined==false) {
os_runloop_once();
}
else {
// Sent sensor values
do_send(&sendjob);
while(sleeping == false) {
os_runloop_once();
}
sleeping = false;
for (int i=0;i<sleepcycles;i++){
LowPower.powerDown(SLEEP_8S, ADC_OFF, BOD_OFF); //sleep 8 seconds
}
}
digitalWrite(LedPin,((millis()/100) % 2) && (joined==false)); // only blinking when joining and not sleeping
} // loop()