Skip to content

Latest commit

 

History

History
70 lines (52 loc) · 2.42 KB

README.md

File metadata and controls

70 lines (52 loc) · 2.42 KB

RoofDetective-DFC-2023

We participated in the 2023 IEEE Data Fusion Contest as a team known as "RoofDetective," an annual event. This year's competition featured two distinct tracks. Our team took part in Track 1, which focused on building detection and roof type classification. For more information on our approach, you can access our detailed report through this link. We ranked 21st among approximately 200 teams across the world.

Team Members

  • Assoc. Prof. Dr. Erchan Aptoula (Sabanci University)
  • Efkan Durakli (Gebze Technical University)
  • Deren Ege Turan (Sabanci University)
  • Ekin Beyazit (Sabanci University)
  • Emirhan Böge (Sabanci University)

Installation

Step 1. clone repository and update submodules

git clone https://github.com/efkandurakli/RoofDetective-DFC-2023.git 
cd RoofDetective-DFC-2023
git submodule update --init --remote --recursive

Step 2. create conda virtual environment and activate it

conda create --name roof-detective-dfc2023 python=3.8
conda activate roof-detective-dfc2023

Step 3. install Pytorch following official instructions

Step 4. Install MMCV using MIM

pip install -U openmim
mim install mmcv-full

Step 5. Install pycocotools, mmengine and MMDetection

conda install -c conda-forge pycocotools
pip install mmengine
cd mmdetection
pip install -v -e .

Step 6. Install other required packages

pip install future tensorboard
conda install -c conda-forge tqdm

Step 7. Download config and checkpoint files and verify your installation

mim download mmdet --config yolov3_mobilenetv2_320_300e_coco --dest .
python demo/image_demo.py demo/demo.jpg yolov3_mobilenetv2_320_300e_coco.py yolov3_mobilenetv2_320_300e_coco_20210719_215349-d18dff72.pth --device cpu --out-file result.jpg

You will see a new image result.jpg on your current folder, where bounding boxes are plotted on cars, benches, etc.

Training

python tools/train.py $CONFIG --work-dir $CHECKPOINT_DIR

Testing

python tools/test.py $CONFIG $checkpoint --format-only --eval-options "jsonfile_prefix=$SAVE_PATH"