-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Bug fixes for Manuscript submission #130
Comments
Found source of issue for duplicate analysis results in Load Dataoptions(tidyverse.quiet = TRUE)
options(lifecycle_verbosity = "warning")
library(ManyEcoEvo)
#> Loading required package: rmarkdown
#> Loading required package: bookdown
#> Registered S3 method overwritten by 'parsnip':
#> method from
#> print.nullmodel vegan
#> Registered S3 method overwritten by 'lava':
#> method from
#> print.estimate EnvStats
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(purrr)
data("ManyEcoEvo_yi") Compare Results with and without Exclusion Subsettingwith exclusion subsettingyi_results_outlier_subsetting <-
ManyEcoEvo_yi %>%
prepare_response_variables(
estimate_type = "yi",
param_table =
ManyEcoEvo:::analysis_data_param_tables,
dataset_standardise = "blue tit",
dataset_log_transform = "eucalyptus"
) %>%
generate_yi_subsets() %>% # TODO: must be run after prepare_response_variables??
apply_VZ_exclusions(
VZ_colname = list(
"eucalyptus" = "se_log",
"blue tit" = "VZ"
),
VZ_cutoff = 3
) %>%
generate_exclusion_subsets() %>%
generate_outlier_subsets(
outcome_variable =
list(
dataset =
list(
"eucalyptus" = "mean_log",
"blue tit" = "Z"
)
),
n_min = -3,
n_max = -3,
ignore_subsets = NULL
) %>%
compute_MA_inputs()
#>
#> ── Computing Sorensen diversity indices inputs ─────────────────────────────────
#>
#> ── Applying exclusion rules and generating exclusion subsets ───────────────────
#>
#> ── Generating out-of-sample prediction subsets. ────────────────────────────────
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ✔ Applied back-transformation for ^100 effect sizes or out of sample predictions.
#> ✔ Applied back-transformation for cubed effect sizes
#> ✔ Applied back-transformation for ^100 effect sizes or out of sample predictions.
#> ✔ Applied back-transformation for cubed effect sizes
#> ✔ Applied back-transformation for ^100 effect sizes or out of sample predictions.
#> ✔ Applied back-transformation for cubed effect sizes
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ✔ Applied back-transformation for ^14 effect sizes or out of sample predictions.
#> ✔ Applied back-transformation for ^14 effect sizes or out of sample predictions.
#> ✔ Applied back-transformation for ^14 effect sizes or out of sample predictions.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for square-root transformed effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for square-root transformed effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for square-root transformed effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ℹ Standardising and/or log-transforming response variables for "yi" estimates.
#>
#> ── Computing meta-analysis inputsfor `estimate_type` = "yi" ────────────────────
#>
#> ── Standardising out-of-sample predictions ──
#>
#> ── Computing meta-analysis inputs: ─────────────────────────────────────────────
#>
#> ── Log-transforming response-variable ──
#>
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#>
#> ── Applying VZ exclusions ──────────────────────────────────────────────────────
#> ! `VZ_cutoff` = 3 was recycled to match the number of unique datasets in `df`.
#>
#> ── Excluding extreme values of VZ ──
#>
#> → 2 extreme values of `VZ` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#>
#> ── Excluding extreme values of VZ ──
#>
#> → 0 extreme values of `VZ` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#>
#> ── Excluding extreme values of VZ ──
#>
#> → 2 extreme values of `VZ` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#>
#> ── Excluding extreme values of VZ ──
#>
#> → 0 extreme values of `se_log` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#>
#> ── Excluding extreme values of VZ ──
#>
#> → 0 extreme values of `se_log` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#>
#> ── Excluding extreme values of VZ ──
#>
#> → 0 extreme values of `se_log` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#> ! `n_min` = -3 was recycled to match the number of unique datasets in `data`.
#> ! `n_max` = -3 was recycled to match the number of unique datasets in `data`.
#> Warning: Unquoting language objects with `!!!` is deprecated as of rlang 0.4.0. Please
#> use `!!` instead.
#>
#> # Bad: dplyr::select(data, !!!enquo(x))
#>
#> # Good: dplyr::select(data, !!enquo(x)) # Unquote single quosure
#> dplyr::select(data, !!!enquos(x)) # Splice list of quosures without exclusion subsettingyi_results_no_exclusion_subsetting_outlier_subsetting <-
ManyEcoEvo_yi %>%
prepare_response_variables(
estimate_type = "yi",
param_table =
ManyEcoEvo:::analysis_data_param_tables,
dataset_standardise = "blue tit",
dataset_log_transform = "eucalyptus"
) %>%
generate_yi_subsets() %>% # TODO: must be run after prepare_response_variables??
apply_VZ_exclusions(
VZ_colname = list(
"eucalyptus" = "se_log",
"blue tit" = "VZ"
),
VZ_cutoff = 3
) %>%
generate_outlier_subsets(
outcome_variable =
list(
dataset =
list(
"eucalyptus" = "mean_log",
"blue tit" = "Z"
)
),
n_min = -3,
n_max = -3,
ignore_subsets = NULL
) %>%
compute_MA_inputs()
#>
#> ── Computing Sorensen diversity indices inputs ─────────────────────────────────
#>
#> ── Generating out-of-sample prediction subsets. ────────────────────────────────
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ✔ Applied back-transformation for ^100 effect sizes or out of sample predictions.
#> ✔ Applied back-transformation for cubed effect sizes
#> ✔ Applied back-transformation for ^100 effect sizes or out of sample predictions.
#> ✔ Applied back-transformation for cubed effect sizes
#> ✔ Applied back-transformation for ^100 effect sizes or out of sample predictions.
#> ✔ Applied back-transformation for cubed effect sizes
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ✔ Applied back-transformation for ^14 effect sizes or out of sample predictions.
#> ✔ Applied back-transformation for ^14 effect sizes or out of sample predictions.
#> ✔ Applied back-transformation for ^14 effect sizes or out of sample predictions.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for square-root transformed effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for square-root transformed effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for square-root transformed effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ℹ Standardising and/or log-transforming response variables for "yi" estimates.
#>
#> ── Computing meta-analysis inputsfor `estimate_type` = "yi" ────────────────────
#>
#> ── Standardising out-of-sample predictions ──
#>
#> ── Computing meta-analysis inputs: ─────────────────────────────────────────────
#>
#> ── Log-transforming response-variable ──
#>
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#>
#> ── Applying VZ exclusions ──────────────────────────────────────────────────────
#> ! `VZ_cutoff` = 3 was recycled to match the number of unique datasets in `df`.
#>
#> ── Excluding extreme values of VZ ──
#>
#> → 2 extreme values of `VZ` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#>
#> ── Excluding extreme values of VZ ──
#>
#> → 0 extreme values of `VZ` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#>
#> ── Excluding extreme values of VZ ──
#>
#> → 2 extreme values of `VZ` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#>
#> ── Excluding extreme values of VZ ──
#>
#> → 0 extreme values of `se_log` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#>
#> ── Excluding extreme values of VZ ──
#>
#> → 0 extreme values of `se_log` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#>
#> ── Excluding extreme values of VZ ──
#>
#> → 0 extreme values of `se_log` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#> ! `n_min` = -3 was recycled to match the number of unique datasets in `data`.
#> ! `n_max` = -3 was recycled to match the number of unique datasets in `data`.
#> Warning: Unquoting language objects with `!!!` is deprecated as of rlang 0.4.0. Please
#> use `!!` instead.
#>
#> # Bad: dplyr::select(data, !!!enquo(x))
#>
#> # Good: dplyr::select(data, !!enquo(x)) # Unquote single quosure
#> dplyr::select(data, !!!enquos(x)) # Splice list of quosures Check resultslist(
yi_results_outlier_subsetting,
yi_results_no_exclusion_subsetting_outlier_subsetting
) %>%
purrr::map(~ dplyr::group_by(.x, dplyr::pick(dplyr::any_of(c(
"dataset",
"estimate_type",
"exclusion_set"
)))) %>%
dplyr::count())
#> [[1]]
#> # A tibble: 12 × 4
#> # Groups: dataset, estimate_type, exclusion_set [12]
#> dataset estimate_type exclusion_set n
#> <chr> <chr> <chr> <int>
#> 1 blue tit y25 complete 1
#> 2 blue tit y25 complete-rm_outliers 1
#> 3 blue tit y50 complete 1
#> 4 blue tit y50 complete-rm_outliers 1
#> 5 blue tit y75 complete 1
#> 6 blue tit y75 complete-rm_outliers 1
#> 7 eucalyptus y25 complete 1
#> 8 eucalyptus y25 complete-rm_outliers 1
#> 9 eucalyptus y50 complete 1
#> 10 eucalyptus y50 complete-rm_outliers 1
#> 11 eucalyptus y75 complete 1
#> 12 eucalyptus y75 complete-rm_outliers 1
#>
#> [[2]]
#> # A tibble: 12 × 4
#> # Groups: dataset, estimate_type, exclusion_set [12]
#> dataset estimate_type exclusion_set n
#> <chr> <chr> <chr> <int>
#> 1 blue tit y25 complete 1
#> 2 blue tit y25 complete-rm_outliers 1
#> 3 blue tit y50 complete 1
#> 4 blue tit y50 complete-rm_outliers 1
#> 5 blue tit y75 complete 1
#> 6 blue tit y75 complete-rm_outliers 1
#> 7 eucalyptus y25 complete 1
#> 8 eucalyptus y25 complete-rm_outliers 1
#> 9 eucalyptus y50 complete 1
#> 10 eucalyptus y50 complete-rm_outliers 1
#> 11 eucalyptus y75 complete 1
#> 12 eucalyptus y75 complete-rm_outliers 1 Check Complete Targets Pipelinepipeline_results_comparison <-
tidyr::expand_grid(
data =
list(
yi_results_outlier_subsetting,
yi_results_no_exclusion_subsetting_outlier_subsetting
),
filter_vars =
list(
NULL,
rlang::expr(exclusion_set == "complete"),
rlang::expr(exclusion_set != "complete")
)
) %>%
purrr::pmap(~ ..1 %>%
meta_analyse_datasets(
outcome_variable =
list(
dataset =
list("eucalyptus" = "mean_log", "blue tit" = "Z")
),
outcome_SE =
list(
dataset =
list("eucalyptus" = "se_log", "blue tit" = "VZ")
),
filter_vars = if (!is.null(..2)) list(..2)
)) %>%
purrr::set_names({
tidyr::expand_grid(
dataset = c(
"outlier_subsetting",
"no_exclusion_subsetting_outlier_subsetting"
),
filter_args = c(
"NULL filter_vars",
"exclusion_set == 'complete'",
"exclusion_set != 'complete"
)
) %>%
tidyr::unite("run_name", dataset, filter_args, sep = " x ") %>%
purrr::flatten_chr()
})
#>
#> ── Meta-analysing Datasets ─────────────────────────────────────────────────────
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.6639
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.3381
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.671
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.5984
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 10.7961
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 13.1214
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.7193
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.4206
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.6745
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.847
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 5.0402
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 9.7949
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> Registered S3 method overwritten by 'quantmod':
#> method from
#> as.zoo.data.frame zoo
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.34 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.14 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.22 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 3.32 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.6 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.53 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.51 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1.88 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 10 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 4.34 for `abs_deviation_score_estimate`.
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> Warning: There were 12 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `box_cox_rating_cont = purrr::map(...)`.
#> Caused by warning in `checkConv()`:
#> ! Model is nearly unidentifiable: very large eigenvalue
#> - Rescale variables?
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 11 remaining warnings.
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#>
#> ── Meta-analysing Datasets ─────────────────────────────────────────────────────
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.6639
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.3381
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.671
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.5984
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 10.7961
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 13.1214
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.7193
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.4206
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.6745
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.847
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 5.0402
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 9.7949
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.34 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.14 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.22 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 3.32 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.6 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.53 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.51 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1.88 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 10 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 4.34 for `abs_deviation_score_estimate`.
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> Warning: There were 12 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `box_cox_rating_cont = purrr::map(...)`.
#> Caused by warning in `checkConv()`:
#> ! Model is nearly unidentifiable: very large eigenvalue
#> - Rescale variables?
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 11 remaining warnings.
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#>
#> ── Meta-analysing Datasets ─────────────────────────────────────────────────────
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.6639
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.3381
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.671
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.5984
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 10.7961
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 13.1214
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.7193
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.4206
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.6745
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.847
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 5.0402
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 9.7949
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.34 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.14 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.22 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 3.32 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.6 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.53 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.51 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1.88 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 10 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 4.34 for `abs_deviation_score_estimate`.
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> Warning: There were 12 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `box_cox_rating_cont = purrr::map(...)`.
#> Caused by warning in `checkConv()`:
#> ! Model is nearly unidentifiable: very large eigenvalue
#> - Rescale variables?
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 11 remaining warnings.
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#>
#> ── Meta-analysing Datasets ─────────────────────────────────────────────────────
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.6618
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.3375
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.672
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.7128
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 12.2935
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 13.2023
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.7169
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.4209
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.6755
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 5.0849
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.8149
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 9.4491
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.33 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.07 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.21 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 4.16 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.58 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.6 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.55 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1.36 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 5.15 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 5.34 for `abs_deviation_score_estimate`.
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> Warning: There were 24 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `box_cox_rating_cont = purrr::map(...)`.
#> Caused by warning in `checkConv()`:
#> ! Model failed to converge with max|grad| = 2.48904 (tol = 0.002, component 1)
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 23 remaining warnings.
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#>
#> ── Meta-analysing Datasets ─────────────────────────────────────────────────────
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.6618
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.3375
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.672
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.7128
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 12.2935
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 13.2023
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.7169
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.4209
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.6755
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 5.0849
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.8149
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 9.4491
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.33 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.07 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.21 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 4.16 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.58 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.6 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.55 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1.36 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 5.15 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 5.34 for `abs_deviation_score_estimate`.
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> Warning: There were 24 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `box_cox_rating_cont = purrr::map(...)`.
#> Caused by warning in `checkConv()`:
#> ! Model failed to converge with max|grad| = 2.48904 (tol = 0.002, component 1)
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 23 remaining warnings.
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#>
#> ── Meta-analysing Datasets ─────────────────────────────────────────────────────
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.6618
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.3375
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.672
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.7128
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 12.2935
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 13.2023
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.7169
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.4209
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.6755
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 5.0849
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.8149
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 9.4491
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.33 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.07 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.21 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 4.16 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.58 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.6 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.55 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1.36 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 5.15 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 5.34 for `abs_deviation_score_estimate`.
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#>
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#>
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> Warning: There were 24 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `box_cox_rating_cont = purrr::map(...)`.
#> Caused by warning in `checkConv()`:
#> ! Model failed to converge with max|grad| = 2.48904 (tol = 0.002, component 1)
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 23 remaining warnings.
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
pipeline_results_comparison %>%
purrr::map(~ dplyr::group_by(.x, dplyr::pick(dplyr::any_of(c(
"dataset",
"estimate_type",
"exclusion_set"
)))) %>%
dplyr::count())
#> $`outlier_subsetting x NULL filter_vars`
#> # A tibble: 12 × 4
#> # Groups: dataset, estimate_type, exclusion_set [12]
#> dataset estimate_type exclusion_set n
#> <chr> <chr> <chr> <int>
#> 1 blue tit y25 complete 1
#> 2 blue tit y25 complete-rm_outliers 1
#> 3 blue tit y50 complete 1
#> 4 blue tit y50 complete-rm_outliers 1
#> 5 blue tit y75 complete 1
#> 6 blue tit y75 complete-rm_outliers 1
#> 7 eucalyptus y25 complete 1
#> 8 eucalyptus y25 complete-rm_outliers 1
#> 9 eucalyptus y50 complete 1
#> 10 eucalyptus y50 complete-rm_outliers 1
#> 11 eucalyptus y75 complete 1
#> 12 eucalyptus y75 complete-rm_outliers 1
#>
#> $`outlier_subsetting x exclusion_set == 'complete'`
#> # A tibble: 12 × 4
#> # Groups: dataset, estimate_type, exclusion_set [12]
#> dataset estimate_type exclusion_set n
#> <chr> <chr> <chr> <int>
#> 1 blue tit y25 complete 3
#> 2 blue tit y25 complete-rm_outliers 1
#> 3 blue tit y50 complete 3
#> 4 blue tit y50 complete-rm_outliers 1
#> 5 blue tit y75 complete 3
#> 6 blue tit y75 complete-rm_outliers 1
#> 7 eucalyptus y25 complete 3
#> 8 eucalyptus y25 complete-rm_outliers 1
#> 9 eucalyptus y50 complete 3
#> 10 eucalyptus y50 complete-rm_outliers 1
#> 11 eucalyptus y75 complete 3
#> 12 eucalyptus y75 complete-rm_outliers 1
#>
#> $`outlier_subsetting x exclusion_set != 'complete`
#> # A tibble: 12 × 4
#> # Groups: dataset, estimate_type, exclusion_set [12]
#> dataset estimate_type exclusion_set n
#> <chr> <chr> <chr> <int>
#> 1 blue tit y25 complete 1
#> 2 blue tit y25 complete-rm_outliers 3
#> 3 blue tit y50 complete 1
#> 4 blue tit y50 complete-rm_outliers 3
#> 5 blue tit y75 complete 1
#> 6 blue tit y75 complete-rm_outliers 3
#> 7 eucalyptus y25 complete 1
#> 8 eucalyptus y25 complete-rm_outliers 3
#> 9 eucalyptus y50 complete 1
#> 10 eucalyptus y50 complete-rm_outliers 3
#> 11 eucalyptus y75 complete 1
#> 12 eucalyptus y75 complete-rm_outliers 3
#>
#> $`no_exclusion_subsetting_outlier_subsetting x NULL filter_vars`
#> # A tibble: 12 × 4
#> # Groups: dataset, estimate_type, exclusion_set [12]
#> dataset estimate_type exclusion_set n
#> <chr> <chr> <chr> <int>
#> 1 blue tit y25 complete 1
#> 2 blue tit y25 complete-rm_outliers 1
#> 3 blue tit y50 complete 1
#> 4 blue tit y50 complete-rm_outliers 1
#> 5 blue tit y75 complete 1
#> 6 blue tit y75 complete-rm_outliers 1
#> 7 eucalyptus y25 complete 1
#> 8 eucalyptus y25 complete-rm_outliers 1
#> 9 eucalyptus y50 complete 1
#> 10 eucalyptus y50 complete-rm_outliers 1
#> 11 eucalyptus y75 complete 1
#> 12 eucalyptus y75 complete-rm_outliers 1
#>
#> $`no_exclusion_subsetting_outlier_subsetting x exclusion_set == 'complete'`
#> # A tibble: 12 × 4
#> # Groups: dataset, estimate_type, exclusion_set [12]
#> dataset estimate_type exclusion_set n
#> <chr> <chr> <chr> <int>
#> 1 blue tit y25 complete 3
#> 2 blue tit y25 complete-rm_outliers 1
#> 3 blue tit y50 complete 3
#> 4 blue tit y50 complete-rm_outliers 1
#> 5 blue tit y75 complete 3
#> 6 blue tit y75 complete-rm_outliers 1
#> 7 eucalyptus y25 complete 3
#> 8 eucalyptus y25 complete-rm_outliers 1
#> 9 eucalyptus y50 complete 3
#> 10 eucalyptus y50 complete-rm_outliers 1
#> 11 eucalyptus y75 complete 3
#> 12 eucalyptus y75 complete-rm_outliers 1
#>
#> $`no_exclusion_subsetting_outlier_subsetting x exclusion_set != 'complete`
#> # A tibble: 12 × 4
#> # Groups: dataset, estimate_type, exclusion_set [12]
#> dataset estimate_type exclusion_set n
#> <chr> <chr> <chr> <int>
#> 1 blue tit y25 complete 1
#> 2 blue tit y25 complete-rm_outliers 3
#> 3 blue tit y50 complete 1
#> 4 blue tit y50 complete-rm_outliers 3
#> 5 blue tit y75 complete 1
#> 6 blue tit y75 complete-rm_outliers 3
#> 7 eucalyptus y25 complete 1
#> 8 eucalyptus y25 complete-rm_outliers 3
#> 9 eucalyptus y50 complete 1
#> 10 eucalyptus y50 complete-rm_outliers 3
#> 11 eucalyptus y75 complete 1
#> 12 eucalyptus y75 complete-rm_outliers 3 Created on 2024-08-29 with reprex v2.1.0 |
egouldo
added a commit
that referenced
this issue
Aug 29, 2024
```r #> Warning: Unquoting language objects with `!!!` is deprecated as of rlang 0.4.0. Please #> use `!!` instead. #> #> # Bad: dplyr::select(data, !!!enquo(x)) #> #> # Good: dplyr::select(data, !!enquo(x)) # Unquote single quosure #> dplyr::select(data, !!!enquos(x)) # Splice list of quosures ```
egouldo
added a commit
that referenced
this issue
Aug 29, 2024
- Added conditional behaviour for when character vector supplied - feat!: added arg checks #116 and cli output for when this condition is triggered --- But wasn't failing for `yi` because `yi` received `rlang::expressions()` while `Zr` call used single length character variable for `outcome_variable` and `outcome_SE`
egouldo
added a commit
that referenced
this issue
Aug 29, 2024
--- failed to be triggered as result needed to evaluate to TRUE for required expression to evaluate
egouldo
added a commit
that referenced
this issue
Aug 29, 2024
--- forgot to add `c()` around character strings for cli message
egouldo
added a commit
that referenced
this issue
Aug 29, 2024
Fixed bug in Local devtools::load_all()
#> ℹ Loading ManyEcoEvo
#> Loading required package: rmarkdown
#>
#> Loading required package: bookdown
#>
#> Registered S3 method overwritten by 'parsnip':
#> method from
#> print.nullmodel vegan
#>
#> Registered S3 method overwritten by 'lava':
#> method from
#> print.estimate EnvStats
check_ManyEcoEvo_results <- ManyEcoEvo %>%
prepare_response_variables(
estimate_type = "Zr",
dataset_standardise =
c("blue tit", "eucalyptus")
) |>
generate_exclusion_subsets(estimate_type = "Zr") |>
generate_rating_subsets() |>
generate_expertise_subsets(
ManyEcoEvo:::expert_subset
) |>
generate_collinearity_subset(
ManyEcoEvo:::collinearity_subset
) |>
generate_outlier_subsets(
outcome_variable =
list(dataset = list(
"eucalyptus" = "Zr",
"blue tit" = "Zr"
)),
n_min = -2,
n_max = -2,
ignore_subsets =
rlang::exprs(
collinearity_subset != "collinearity_removed",
expertise_subset != "expert",
publishable_subset == "All",
exclusion_set != "complete"
)
) |>
compute_MA_inputs(estimate_type = "Zr") |>
meta_analyse_datasets(
outcome_variable = "Zr",
outcome_SE = "VZr",
filter_vars =
rlang::exprs(
exclusion_set == "complete",
expertise_subset == "All",
publishable_subset == "All",
collinearity_subset == "All"
)
)
#>
#> ── Computing Sorensen diversity indices inputs ─────────────────────────────────
#>
#> ── Applying exclusion rules and generating exclusion subsets ───────────────────
#> ℹ Standardising response variables for "Zr" estimates.
#>
#> ── Computing meta-analysis inputsfor `estimate_type` = "Zr" ────────────────────
#>
#> ── Computing standardised effect sizes `Zr` and variance `VZr` ──
#>
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 484.0193.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 666.56874.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 590.18263.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.006225,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.003996,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df 481.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.09247,
#> 3. adjusted_df 316.17526.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.029,
#> 3. adjusted_df 366.3.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.042,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01416305,
#> 3. adjusted_df 257.905.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.030382264,
#> 3. adjusted_df 2372.82.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01409,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.008781,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.014853,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.000769,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.033978443,
#> 3. adjusted_df 347.4992526.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01823188,
#> 3. adjusted_df 55.44391.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.02039768,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.02496,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.03575,
#> 3. adjusted_df NA.
#>
#> ── Computing meta-analysis inputsfor `estimate_type` = "Zr" ────────────────────
#>
#> ── Computing standardised effect sizes `Zr` and variance `VZr` ──
#>
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.29212,
#> 3. adjusted_df 21.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.007831,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.07216,
#> 3. adjusted_df 0.560867697.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.57,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.2328,
#> 3. adjusted_df 343.24787.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.3188723,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.0059286,
#> 3. adjusted_df 1.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.007385,
#> 3. adjusted_df 3.5e-25.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.052462,
#> 3. adjusted_df 3.5e-25.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.605,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 8.98,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 7.97,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 5.19,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 18.5,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 5.92,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.529,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 2.89,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.605,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.01312667,
#> 3. adjusted_df -2.6269353.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.197,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.192,
#> 3. adjusted_df 82.703.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.1,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se NA,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.0048042,
#> 3. adjusted_df 341.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.21,
#> 3. adjusted_df NA.
#> ✖ Required values for computing standardised effect sizes missing:
#> ! Returning "NA" for tupple:
#> 1. beta_estimate NA,
#> 2. beta_se 0.5756016,
#> 3. adjusted_df 3.536992.
#> ! `n_min` = -2 was recycled to match the number of unique datasets in `data`.
#> ! `n_max` = -2 was recycled to match the number of unique datasets in `data`.
#> ! Column `estimate_type` already exists in `ManyEcoEvo`, and will be overwritten by supplied value of `estimate_type` = "Zr"
#>
#> ── Meta-analysing Datasets ─────────────────────────────────────────────────────
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Fitting metaregression ──
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.3512
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.0922
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.3587
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.1074
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.363
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.3699
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.0247
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.0422
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.3743
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.3699
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.0274
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.0516
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.3606
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.1659
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.3584
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.3636
#>
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#>
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.038
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> Registered S3 method overwritten by 'quantmod':
#> method from
#> as.zoo.data.frame zoo
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.27 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.18 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.55 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.02 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.15 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.02 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.21 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.51 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.63 for `abs_deviation_score_estimate`.
#>
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#>
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#>
#> ℹ
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#>
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> # A tibble: 2 × 2
#> mixed_model n
#> <dbl> <int>
#> 1 0 3
#> 2 1 128
#>
#> ── Fitting glm for Box-Cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> # A tibble: 2 × 2
#> mixed_model n
#> <dbl> <int>
#> 1 0 3
#> 2 1 115
#>
#> ── Fitting glm for Box-Cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> # A tibble: 2 × 2
#> mixed_model n
#> <dbl> <int>
#> 1 0 2
#> 2 1 107
#>
#> ── Fitting glm for Box-Cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> # A tibble: 2 × 2
#> mixed_model n
#> <dbl> <int>
#> 1 0 2
#> 2 1 98
#>
#> ── Fitting glm for Box-Cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> # A tibble: 2 × 2
#> mixed_model n
#> <dbl> <int>
#> 1 0 1
#> 2 1 88
#>
#> ── Fitting glm for Box-Cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> # A tibble: 2 × 2
#> mixed_model n
#> <dbl> <int>
#> 1 0 3
#> 2 1 114
#> # A tibble: 2 × 2
#> mixed_model n
#> <dbl> <int>
#> 1 0 3
#> 2 1 111
#>
#> ── Fitting glm for Box-Cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> Warning: There were 45 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `box_cox_rating_cont = list(...)`.
#> ℹ In row 1.
#> Caused by warning in `optwrap()`:
#> ! convergence code -4 from nloptwrap: NLOPT_ROUNDOFF_LIMITED: Roundoff errors led to a breakdown of the optimization algorithm. In this case, the returned minimum may still be useful. (e.g. this error occurs in NEWUOA if one tries to achieve a tolerance too close to machine precision.)
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 44 remaining warnings.
#> ℹ Presence of random effects in analyses included as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete
#> • expertise_subset: All
#> • publishable_subset: All
#> • collinearity_subset: All
#> ℹ Presence of random effects in analyses included as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete
#> • expertise_subset: All
#> • publishable_subset: All
#> • collinearity_subset: All
check_ManyEcoEvo_results$uni_mixed_effects %>% map_lgl(rlang::is_na)
#> [1] TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE
#> [13] TRUE FALSE TRUE TRUE FALSE Created on 2024-08-29 with reprex v2.1.0 |
egouldo
added a commit
that referenced
this issue
Aug 29, 2024
data subset columns now NOT explicitly named, only model outputs from `meta_analyse_datasets()` and `prepare_response_variables()` --- fixes for #130 broke `make_viz()`
egouldo
added a commit
that referenced
this issue
Aug 29, 2024
was originally only included to generate hard-coded columns, now no longer needed with #121 / #130 updates, and was never planned: <https://egouldo.github.io/ManyAnalysts/#out-of-sample-predictions-y_i-2>
egouldo
added a commit
that referenced
this issue
Aug 29, 2024
`broom::tidy()` doesn't have method for `lmerMod` class
egouldo
added a commit
that referenced
this issue
Aug 29, 2024
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Bug fixes required for rendering Manuscript:
Function fixes
tidy_mod_summary
column inmake_viz()
results should also include studies, i.e.:Targets Outputs
NA
returned for ALL results offit_uni_mixed_effects()
:Created on 2024-08-29 with reprex v2.1.0
ManyEcoEvo_yi_results
object 🤔Local
.Rprofile
detected at/Users/elliotgould/Documents/GitHub/ManyEcoEvo/.Rprofile
Created on 2024-08-29 with reprex v2.1.0
But
Zr
pipeline ok:Local
.Rprofile
detected at/Users/elliotgould/Documents/GitHub/ManyEcoEvo/.Rprofile
Created on 2024-08-29 with reprex v2.1.0
The text was updated successfully, but these errors were encountered: