-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbert_finetune.py
610 lines (515 loc) · 24.9 KB
/
bert_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import csv
import os
import logging
import argparse
import random
import datetime
from tqdm import tqdm, trange
from pathlib import Path
import math
import numpy as np
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from pytorch_pretrained_bert.tokenization import printable_text, BertTokenizer
from pytorch_pretrained_bert.modeling import BertForSequenceClassification
from pytorch_pretrained_bert.optimization import BertAdam
logging.basicConfig(filename = '{}_log.txt'.format(datetime.datetime.now()),
format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
PYTORCH_PRETRAINED_BERT_CACHE = Path(os.getenv('PYTORCH_PRETRAINED_BERT_CACHE',
Path.home() / '.pytorch_pretrained_bert'))
logger.info(PYTORCH_PRETRAINED_BERT_CACHE)
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_id):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a comma separated value file."""
lines = pd.read_csv(input_file, sep="\t", header=None, names=["text", "id", "label"])
return lines
class HackProcessor(DataProcessor):
"""Processor for the Emw data set."""
def get_train_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "val.tsv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return ["non-propaganda", "propaganda"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in lines.iterrows():
guid = i
text_a = str(line.text)
label = str(line.label)
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
return examples
def convert_examples_to_features(example, label_list, max_seq_length, tokenizer):
"""Loads a data file into a list of `InputBatch`s."""
label_map = {}
for (i, label) in enumerate(label_list):
label_map[label] = i
features = []
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[0:(max_seq_length - 2)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambigiously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
if tokens_b:
for token in tokens_b:
tokens.append(token)
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
label_id = label_map[example.label]
return InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id)
class HackData(Dataset):
""""""
def __init__(self, examples, label_list, max_seq_length, tokenizer):
self.examples = examples
self.label_list = label_list
self.max_seq_length = max_seq_length
self.tokenizer = tokenizer
def __len__(self):
return len(self.examples)
def __getitem__(self, idx):
ex = self.examples[idx]
feats = convert_examples_to_features(ex, self.label_list, self.max_seq_length, self.tokenizer)
input_ids = torch.tensor(feats.input_ids, dtype=torch.long)
input_mask = torch.tensor(feats.input_mask, dtype=torch.long)
segment_ids = torch.tensor(feats.segment_ids, dtype=torch.long)
label_ids = torch.tensor(feats.label_id, dtype=torch.long)
return input_ids, input_mask, segment_ids, label_ids
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
def get_rates(out, labels):
outputs = np.argmax(out, axis=1)
adder = outputs + labels
TP = len(adder[adder == 2])
TN = len(adder[adder == 0])
subtr = labels - outputs
FP = len(subtr[subtr == -1])
FN = len(subtr[subtr == 1])
return np.array([TP, TN, FP, FN])
def get_scores(rates):
[TP, TN, FP, FN] = rates
balanced_acc = ((TP / (TP+FN)) + (TN / (TN+FP))) / 2
mcc = (TP*TN - FP*FN) / math.sqrt((TP + FP)*(TP + FN)*(TN + FP)*(TN + FN))
precision_2 = TP / (TP + FP)
precision_1 = TN / (TN + FN)
recall_2 = TP / (TP + FN)
recall_1 = TN / (TN + FP)
f1_1 = (2 * precision_1 * recall_1) / (precision_1 + recall_1)
f1_2 = (2 * precision_2 * recall_2) / (precision_2 + recall_2)
return balanced_acc, f1_1, f1_2, mcc, recall_2, precision_2
def copy_optimizer_params_to_model(named_params_model, named_params_optimizer):
""" Utility function for optimize_on_cpu and 16-bits training.
Copy the parameters optimized on CPU/RAM back to the model on GPU
"""
for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model):
if name_opti != name_model:
logger.error("name_opti != name_model: {} {}".format(name_opti, name_model))
raise ValueError
param_model.data.copy_(param_opti.data)
def set_optimizer_params_grad(named_params_optimizer, named_params_model, test_nan=False):
""" Utility function for optimize_on_cpu and 16-bits training.
Copy the gradient of the GPU parameters to the CPU/RAMM copy of the model
"""
is_nan = False
for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model):
if name_opti != name_model:
logger.error("name_opti != name_model: {} {}".format(name_opti, name_model))
raise ValueError
if param_model.grad is not None:
if test_nan and torch.isnan(param_model.grad).sum() > 0:
is_nan = True
if param_opti.grad is None:
param_opti.grad = torch.nn.Parameter(param_opti.data.new().resize_(*param_opti.data.size()))
param_opti.grad.data.copy_(param_model.grad.data)
else:
param_opti.grad = None
return is_nan
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
parser.add_argument("--task_name",
default=None,
type=str,
required=True,
help="The name of the task to train.")
parser.add_argument("--output_file",
default=None,
type=str,
required=True,
help="The output file where the model checkpoints will be written.")
## Other parameters
parser.add_argument("--max_seq_length",
default=512,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train",
default=False,
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval",
default=False,
action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=32,
type=int,
help="Total batch size for eval.")
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda",
default=False,
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumualte before performing a backward/update pass.")
parser.add_argument('--optimize_on_cpu',
default=False,
action='store_true',
help="Whether to perform optimization and keep the optimizer averages on CPU")
parser.add_argument('--fp16',
default=False,
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type=float, default=128,
help='Loss scaling, positive power of 2 values can improve fp16 convergence.')
parser.add_argument("--model_load",
default="",
type=str,
help="The path of model state.")
args = parser.parse_args()
processors = {
"hack": HackProcessor,
}
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
if args.fp16:
logger.info("16-bits training currently not supported in distributed training")
args.fp16 = False # (see https://github.com/pytorch/pytorch/pull/13496)
logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
#if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
# raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
#os.makedirs(args.output_dir, exist_ok=True)
task_name = args.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name]()
label_list = processor.get_labels()
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
train_examples = None
num_train_steps = None
if args.do_train:
train_examples = processor.get_train_examples(args.data_dir)
random.shuffle(train_examples)
num_train_steps = int(
len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)
# Prepare model
model = BertForSequenceClassification.from_pretrained(args.bert_model, PYTORCH_PRETRAINED_BERT_CACHE)
if args.model_load != "":
model.load_state_dict(torch.load(args.model_load))
logger.info("Model state has been loaded.")
model.to(device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
# Prepare optimizer
if args.fp16:
param_optimizer = [(n, param.clone().detach().to('cpu').float().requires_grad_()) \
for n, param in model.named_parameters()]
elif args.optimize_on_cpu:
param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \
for n, param in model.named_parameters()]
else:
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
]
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_steps)
if args.do_eval:
eval_examples = processor.get_dev_examples(args.data_dir)
random.shuffle(eval_examples)
eval_dataloader = DataLoader(dataset=HackData(eval_examples, label_list, args.max_seq_length, tokenizer), batch_size=args.eval_batch_size)
global_step = 0
best_f1_pos = 0.0
if args.do_train:
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_steps)
train_dataloader = DataLoader(dataset=HackData(train_examples, label_list, args.max_seq_length, tokenizer), batch_size=args.train_batch_size)
model.train()
for epoch_num in trange(int(args.num_train_epochs), desc="Epoch"):
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
loss, _ = model(input_ids, segment_ids, input_mask, label_ids)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.fp16 and args.loss_scale != 1.0:
# rescale loss for fp16 training
# see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
loss = loss * args.loss_scale
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16 or args.optimize_on_cpu:
if args.fp16 and args.loss_scale != 1.0:
# scale down gradients for fp16 training
for param in model.parameters():
if param.grad is not None:
param.grad.data = param.grad.data / args.loss_scale
is_nan = set_optimizer_params_grad(param_optimizer, model.named_parameters(), test_nan=True)
if is_nan:
logger.info("FP16 TRAINING: Nan in gradients, reducing loss scaling")
args.loss_scale = args.loss_scale / 2
model.zero_grad()
continue
optimizer.step()
copy_optimizer_params_to_model(model.named_parameters(), param_optimizer)
else:
optimizer.step()
model.zero_grad()
global_step += 1
if args.do_eval:
model.eval()
total_rates = np.array([0,0,0,0])
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
tmp_eval_loss, logits = model(input_ids, segment_ids, input_mask, label_ids)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
tmp_eval_accuracy = accuracy(logits, label_ids)
tmp_rates = get_rates(logits, label_ids)
eval_loss += tmp_eval_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
total_rates += tmp_rates
nb_eval_examples += input_ids.size(0)
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
balanced_acc, f1_neg, f1_pos, mcc, _, _ = get_scores(total_rates.tolist())
result = {'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy,
'global_step': global_step,
'balanced_accuracy' : balanced_acc,
'f1_neg' : f1_neg,
'f1_pos' : f1_pos,
'mcc' : mcc,
'loss': tr_loss/nb_tr_steps}
if best_f1_pos < f1_pos:
best_f1_pos = f1_pos
logger.info("Saving model...")
model_to_save = model.module if hasattr(model, 'module') else model # To handle multi gpu
torch.save(model_to_save.state_dict(), args.output_file)
logger.info("***** Epoch " + str(epoch_num + 1) + " *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
model.train() # back to training
if __name__ == "__main__":
main()