-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathreconstruct_all.py
executable file
·233 lines (204 loc) · 8.04 KB
/
reconstruct_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#!/bin/python
#-----------------------------------------------------------------------------
# File Name : reconstruct_all.py
# Purpose: Reconstructs MNIST digits from pre-trained RBM
#
# Author: Emre Neftci
#
# Creation Date : 25-04-2013
# Last Modified : Fri 27 Jun 2014 04:26:09 PM PDT
#
# Copyright : (c) UCSD, Emre Neftci, Srinjoy Das, Bruno Pedroni, Kenneth Kreutz-Delgado, Gert Cauwenberghs
# Licence : GPLv2
#-----------------------------------------------------------------------------
import numpy
import meta_parameters
meta_parameters.parameters_script = 'parameters_reconstruct_all'
from common import *
from MNIST_IF_STDP_SEQ import main
#Load pre-trained RBM
Wh,Wc,b_init = load_NS_v2(N_v, N_h, N_c, dataset = 'data/WSCD.pkl')
W = np.zeros([N_v+N_c,N_h])
W[:(N_v),:] = Wh
W[N_v:(N_v+N_c),:] = Wc.T
b_h = b_init[(N_v+N_c):]
b_v = b_init[:N_v]
b_c = b_init[N_v:(N_v+N_c)]
N = 10
def scale_to_unit_interval(ndar, eps=1e-8):
""" Scales all values in the ndarray ndar to be between 0 and 1 """
ndar = ndar.copy()
ndar -= ndar.min()
ndar *= 1.0 / (ndar.max() + eps)
return ndar
def tile_raster_images(X, img_shape, tile_shape, tile_spacing=(0, 0),
scale_rows_to_unit_interval=True,
output_pixel_vals=True):
"""
Transform an array with one flattened image per row, into an array in
which images are reshaped and layed out like tiles on a floor.
This function is useful for visualizing datasets whose rows are images,
and also columns of matrices for transforming those rows
(such as the first layer of a neural net).
:type X: a 2-D ndarray or a tuple of 4 channels, elements of which can
be 2-D ndarrays or None;
:param X: a 2-D array in which every row is a flattened image.
:type img_shape: tuple; (height, width)
:param img_shape: the original shape of each image
:type tile_shape: tuple; (rows, cols)
:param tile_shape: the number of images to tile (rows, cols)
:param output_pixel_vals: if output should be pixel values (i.e. int8
values) or floats
:param scale_rows_to_unit_interval: if the values need to be scaled before
being plotted to [0,1] or not
:returns: array suitable for viewing as an image.
(See:`PIL.Image.fromarray`.)
:rtype: a 2-d array with same dtype as X.
"""
assert len(img_shape) == 2
assert len(tile_shape) == 2
assert len(tile_spacing) == 2
# The expression below can be re-written in a more C style as
# follows :
#
# out_shape = [0,0]
# out_shape[0] = (img_shape[0]+tile_spacing[0])*tile_shape[0] -
# tile_spacing[0]
# out_shape[1] = (img_shape[1]+tile_spacing[1])*tile_shape[1] -
# tile_spacing[1]
out_shape = [(ishp + tsp) * tshp - tsp for ishp, tshp, tsp
in zip(img_shape, tile_shape, tile_spacing)]
if isinstance(X, tuple):
assert len(X) == 4
# Create an output numpy ndarray to store the image
if output_pixel_vals:
out_array = numpy.zeros((out_shape[0], out_shape[1], 4),
dtype='uint8')
else:
out_array = numpy.zeros((out_shape[0], out_shape[1], 4),
dtype=X.dtype)
#colors default to 0, alpha defaults to 1 (opaque)
if output_pixel_vals:
channel_defaults = [0, 0, 0, 255]
else:
channel_defaults = [0., 0., 0., 1.]
for i in xrange(4):
if X[i] is None:
# if channel is None, fill it with zeros of the correct
# dtype
dt = out_array.dtype
if output_pixel_vals:
dt = 'uint8'
out_array[:, :, i] = numpy.zeros(out_shape,
dtype=dt) + channel_defaults[i]
else:
# use a recurrent call to compute the channel and store it
# in the output
out_array[:, :, i] = tile_raster_images(
X[i], img_shape, tile_shape, tile_spacing,
scale_rows_to_unit_interval, output_pixel_vals)
return out_array
else:
# if we are dealing with only one channel
H, W = img_shape
Hs, Ws = tile_spacing
# generate a matrix to store the output
dt = X.dtype
if output_pixel_vals:
dt = 'uint8'
out_array = numpy.zeros(out_shape, dtype=dt)
for tile_row in xrange(tile_shape[0]):
for tile_col in xrange(tile_shape[1]):
if tile_row * tile_shape[1] + tile_col < X.shape[0]:
this_x = X[tile_row * tile_shape[1] + tile_col]
if scale_rows_to_unit_interval:
# if we should scale values to be between 0 and 1
# do this by calling the `scale_to_unit_interval`
# function
this_img = scale_to_unit_interval(
this_x.reshape(img_shape))
else:
this_img = this_x.reshape(img_shape)
# add the slice to the corresponding position in the
# output array
c = 1
if output_pixel_vals:
c = 255
out_array[
tile_row * (H + Hs): tile_row * (H + Hs) + H,
tile_col * (W + Ws): tile_col * (W + Ws) + W
] = this_img * c
return out_array
def create_no_Id_class(min_p = 1e-32, max_p = 1-1e-8, seed = None):
iv_l_seq = range(10)
Idp = np.ones([N, N_v+N_c])*min_p
for i in range(N):
cl = np.zeros(N_c)
cl[(iv_l_seq[i]*n_c_unit):((iv_l_seq[i]+1)*n_c_unit)] = max_p
Idp[i,N_v:] = clamped_input_transform(cl, min_p = min_p, max_p = max_p)
Idp[i,:N_v] = 0.
Id = (Idp /beta)
return Id
def wrap_run(Id):
out = main(W, b_v, b_c, b_h, Id = np.array([Id]))
Mh, Mv= out['Mh'], out['Mv']
res = np.array(spike_histogram(Mv,t_sim/2,t_sim)).T[1][:N_v].reshape(28,28)
return res
if __name__ == '__main__':
Ids = create_no_Id_class()
d = et.mksavedir()
import multiprocessing
pool = multiprocessing.Pool(10)
pool_out = pool.map(wrap_run, Ids)
imshow(tile_raster_images(np.array(pool_out), np.array((28,28)), np.array((2,5)), tile_spacing = (1,1)))
xticks([]), yticks([])
bone()
et.globaldata.pool_out = pool_out
et.savefig('reconstructed_binary.png', format = 'png')
# print np.mean(np.array(pool_out) == test_labels[:N])
# print os.path.dirname(os.path.abspath(__file__))
# et.mksavedir()
# et.globaldata.pool_out = pool_out
# et.globaldata.params = [Wh, Wc, b_vch]
# et.save()
# import matplotlib, pylab
# matplotlib.rcParams['savefig.dpi']=180.
# matplotlib.rcParams['font.size']=26.0
# matplotlib.rcParams['figure.figsize']=(6.0,6.0)
# matplotlib.rcParams['axes.formatter.limits']=[-10,10]
# pylab.rc('legend', borderaxespad=0., borderpad=.4,
# handlelength=1.4, labelspacing=0.4)
#
# figure()
# ion()
# raster_plot(Mv, Mh, Mc)
# axhline(1, color='k', linewidth=2, alpha=0.8)
# axhline(2, color='k', linewidth=2, alpha=0.8)
# yticks([.5, 1.5, 2.5],['v$','$h$','$c$'])
# ylabel('')
# xlim([0,500])
# pylab.savefig('paper/raster_reconstruction.png', format='png')
#
# figure()
# imshow(np.array(spike_histogram(Mv,.1,1)).T[1].reshape(28,28))
# xticks([])
# yticks([])
# pylab.savefig('paper/reconstruction.png', format='png')
#
# figure()
# N = MV.values.shape[0]
# for i in range(N):
# if i==9:
# c='r'
# else:
# c='k'
# plot(np.concatenate([np.array([-0.1]),MV.times]),np.concatenate([np.array([i]),0.7*MV.values[i,:]+i]), c)
# xlim([-0.1,0.5])
# ylim([-1,10])
# yticks(range(10))
# xticks([0,0.5])
# xlabel('Time[s]')
# ylabel('Class Label Neuron #')
# #gca().add_patch(Rectangle((-0.05,0),0.02,.7, color='k'))
# #text(-0.07,-0.6, '1.0V')
# pylab.savefig('paper/vmem.png', format='png')