-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmodels.py
159 lines (129 loc) · 4.94 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import torch.nn as nn
import torch.nn.functional as F
import torch
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm3d") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
##############################
# U-NET
##############################
class UNetDown(nn.Module):
def __init__(self, in_size, out_size, normalize=True, dropout=0.0):
super(UNetDown, self).__init__()
layers = [nn.Conv3d(in_size, out_size, 4, 2, 1, bias=False)]
if normalize:
layers.append(nn.InstanceNorm3d(out_size))
layers.append(nn.LeakyReLU(0.2))
if dropout:
layers.append(nn.Dropout(dropout))
self.model = nn.Sequential(*layers)
def forward(self, x):
# print('in', x.shape)
# print('out', self.model(x).shape)
return self.model(x)
class UNetMid(nn.Module):
def __init__(self, in_size, out_size, dropout=0.0):
super(UNetMid, self).__init__()
layers = [
nn.Conv3d(in_size, out_size, 4, 1, 1, bias=False),
nn.InstanceNorm3d(out_size),
nn.LeakyReLU(0.2)
]
if dropout:
layers.append(nn.Dropout(dropout))
self.model = nn.Sequential(*layers)
def forward(self, x, skip_input):
# print(x.shape)
x = torch.cat((x, skip_input), 1)
x = self.model(x)
x = nn.functional.pad(x, (1,0,1,0,1,0))
return x
class UNetUp(nn.Module):
def __init__(self, in_size, out_size, dropout=0.0):
super(UNetUp, self).__init__()
layers = [
nn.ConvTranspose3d(in_size, out_size, 4, 2, 1, bias=False),
nn.InstanceNorm3d(out_size),
nn.ReLU(inplace=True),
]
if dropout:
layers.append(nn.Dropout(dropout))
self.model = nn.Sequential(*layers)
def forward(self, x, skip_input):
# print('new')
# print(x.shape)
# print(skip_input.shape)
x = self.model(x)
# print(x.shape)
x = torch.cat((x, skip_input), 1)
return x
class GeneratorUNet(nn.Module):
def __init__(self, in_channels=1, out_channels=1):
super(GeneratorUNet, self).__init__()
self.down1 = UNetDown(in_channels, 64, normalize=False)
self.down2 = UNetDown(64, 128)
self.down3 = UNetDown(128, 256)
self.down4 = UNetDown(256, 512)
self.mid1 = UNetMid(1024, 512, dropout=0.2)
self.mid2 = UNetMid(1024, 512, dropout=0.2)
self.mid3 = UNetMid(1024, 512, dropout=0.2)
self.mid4 = UNetMid(1024, 256, dropout=0.2)
self.up1 = UNetUp(256, 256)
self.up2 = UNetUp(512, 128)
self.up3 = UNetUp(256, 64)
# self.us = nn.Upsample(scale_factor=2)
self.final = nn.Sequential(
# nn.Conv3d(128, out_channels, 4, padding=1),
# nn.Tanh(),
nn.ConvTranspose3d(128, out_channels, 4, 2, 1),
nn.Tanh()
)
def forward(self, x):
# U-Net generator with skip connections from encoder to decoder
d1 = self.down1(x)
d2 = self.down2(d1)
d3 = self.down3(d2)
d4 = self.down4(d3)
m1 = self.mid1(d4, d4)
m2 = self.mid2(m1, m1)
m3 = self.mid3(m2, m2)
m4 = self.mid4(m3, m3)
u1 = self.up1(m4, d3)
u2 = self.up2(u1, d2)
u3 = self.up3(u2, d1)
# u7 = self.up7(u6, d1)
# u7 = self.us(u7)
# u7 = nn.functional.pad(u7, pad=(1,0,1,0,1,0))
# # print(self.final(u7).shape)
return self.final(u3)
##############################
# Discriminator
##############################
class Discriminator(nn.Module):
def __init__(self, in_channels=1):
super(Discriminator, self).__init__()
def discriminator_block(in_filters, out_filters, normalization=True):
"""Returns downsampling layers of each discriminator block"""
layers = [nn.Conv3d(in_filters, out_filters, 4, stride=2, padding=1)]
if normalization:
layers.append(nn.InstanceNorm3d(out_filters))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers
self.model = nn.Sequential(
*discriminator_block(in_channels * 2, 64, normalization=False),
*discriminator_block(64, 128),
*discriminator_block(128, 256),
*discriminator_block(256, 512),
# nn.ZeroPad3d((1, 0, 1, 0)),
)
self.final = nn.Conv3d(512, 1, 4, padding=1, bias=False)
def forward(self, img_A, img_B):
# Concatenate image and condition image by channels to produce input
img_input = torch.cat((img_A, img_B), 1)
intermediate = self.model(img_input)
pad = nn.functional.pad(intermediate, pad=(1,0,1,0,1,0))
return self.final(pad)