- GDAL
- tqdm
- Numpy
- Pillow
- OpenCV
- MulticoreTSNE
- colorcorrect
crop_rgb-nir.py
separates RGB-NIR GeoTIFF data into RGB and NIR data and crops the each data except for blackout part.
If filename option is specified, it is processed for the specified file with single core cpu.
If not, it is processed for files in the specified input directory with multicore cpu.
If you specified --colorcorrect (-cc)
option, cropped images are colorcorrected using colorcorrect
module.
python crop_rgb-nir.py -i <path to input dir> -o <path to output dir> --filename <filename> -s <size> -cc
or
python crop_rgb-nir.py -i <path to input dir> -o <path to output dir> -s <size> -cc
make_training_datalist.py
makes a list of training data train_files.pkl
from cropped RGB images.
make_training_datalist.py
saves feature vectors of fc7
layer of pretrained AlexNet as an intermediate result in filename_feature.pkl
.
For details, refer to Sec. 3.2 of our paper.
python make_training_datalist.py -i <path to input dir or filename_feature.pkl> -o <path to output dir> -n_d <num of training data> -n_g <square of num of grids>
make_clouds.py
makes synthesized cloud images using perlin noise.
The size of the cloud can be adjusted by changing NoiseOffset
in the PythonCloud/Config.py
.
python make_clouds.py -n <the number of cloud images> -o <path to output dir>
python color_correct.py --in_dir <path to input dir> --out_dir <path to output dir> --grey_world --stretch
feature_space_visualizer.py
make an image visualized 2-D feature space from filename_feature.pkl
.
python feature_space_visualizer.py -i <path to `filename_feature.pkl`> -o <path to output file> -g_n <square of num of grids>
PythonCloud/
is referedPython-Cloud
repository. We modified the code of this repository for Python3.