-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathAN_Face_Detect.py
51 lines (35 loc) · 1.18 KB
/
AN_Face_Detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import cv2
from mathutils import Vector
# Get user supplied values
#directAccess
imagePath = "/Users/jimmygunawan/Desktop/chinesetroop_{:04d}.jpg".format(Offset)
print(imagePath)
# Get image via Blender, but this does not update
#imageInBlender = bpy.data.images['ppap']
#imagePath = bpy.path.abspath(imageInBlender.filepath)
#print(imagePath)
cascPath = "/Users/jimmygunawan/Desktop/_PINEAPPLE_FILES/haarcascade_frontalface_default.xml"
#imagePath = images.load("/home/zeffii/Desktop/some_image.png", check_existing=True)
# Create the haar cascade
faceCascade = cv2.CascadeClassifier(cascPath)
# Read the image
image = cv2.imread(imagePath)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect faces in the image
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=1,
minSize=(1, 1),
#flags = cv2.cv.CV_HAAR_SCALE_IMAGE
flags = cv2.CASCADE_SCALE_IMAGE
)
#print ( "Found {0} faces!".format(len(faces)) )
VectorList = []
FloatList = []
# Draw a rectangle around the faces
for (x, y, w, h) in faces:
#cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)
#print(x,y,w,h)
VectorList.append( Vector((x,y,0)) )
FloatList.append(w)