-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathmain.nf
962 lines (856 loc) · 33.9 KB
/
main.nf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
#!/usr/bin/env nextflow
/* This workflow is a adapted from two previous pipeline written in Snakemake:
- https://github.com/nanoporetech/pipeline-nanopore-ref-isoforms
*/
import groovy.json.JsonBuilder;
import nextflow.util.BlankSeparatedList;
import java.util.ArrayList;
nextflow.enable.dsl = 2
include { fastq_ingress; xam_ingress } from './lib/ingress'
include { configure_igv } from './lib/common'
include { reference_assembly } from './subworkflows/reference_assembly'
include { differential_expression } from './subworkflows/differential_expression'
OPTIONAL_FILE = file("$projectDir/data/OPTIONAL_FILE")
process getVersions {
label "isoforms"
cpus 1
memory "2 GB"
output:
path "versions.txt"
script:
"""
python -c "import pysam; print(f'pysam,{pysam.__version__}')" >> versions.txt
python -c "import aplanat; print(f'aplanat,{aplanat.__version__}')" >> versions.txt
python -c "import pandas; print(f'pandas,{pandas.__version__}')" >> versions.txt
python -c "import sklearn; print(f'scikit-learn,{sklearn.__version__}')" >> versions.txt
fastcat --version | sed 's/^/fastcat,/' >> versions.txt
minimap2 --version | sed 's/^/minimap2,/' >> versions.txt
samtools --version | head -n 1 | sed 's/ /,/' >> versions.txt
bedtools --version | head -n 1 | sed 's/ /,/' >> versions.txt
python -c "import pychopper; print(f'pychopper,{pychopper.__version__}')" >> versions.txt
gffread --version | sed 's/^/gffread,/' >> versions.txt
seqkit version | head -n 1 | sed 's/ /,/' >> versions.txt
stringtie --version | sed 's/^/stringtie,/' >> versions.txt
gffcompare --version | head -n 1 | sed 's/ /,/' >> versions.txt
"""
}
process getParams {
label "isoforms"
cpus 1
memory "2 GB"
output:
path "params.json"
script:
def paramsJSON = new JsonBuilder(params).toPrettyString()
"""
# Output nextflow params object to JSON
echo '$paramsJSON' > params.json
"""
}
process decompress_ref {
label "isoforms"
cpus 1
memory "2 GB"
input:
path compressed_ref
output:
path "${compressed_ref.baseName}", emit: decompressed_ref
"""
gzip -df ${compressed_ref}
"""
}
process decompress_annotation {
label "isoforms"
cpus 1
memory "2 GB"
input:
path compressed_annotation
output:
path "${compressed_annotation.baseName}"
"""
gzip -df ${compressed_annotation}
"""
}
process decompress_transcriptome {
label "isoforms"
cpus 1
memory "2 GB"
input:
path "compressed_ref.gz"
output:
path "compressed_ref", emit: decompressed_ref
"""
gzip -df "compressed_ref.gz"
"""
}
// Remove empty transcript ID fields
process preprocess_ref_annotation {
label "isoforms"
cpus 1
memory "2 GB"
input:
path ref_annotation
output:
path "amended.${ref_annotation}"
"""
sed -i -e 's/transcript_id "";//g' ${ref_annotation}
mv ${ref_annotation} "amended.${ref_annotation}"
"""
}
// Just keep transcript ID for each transcriptome fasta
process preprocess_ref_transcriptome {
label "isoforms"
cpus 1
memory "2 GB"
input:
path "ref_transcriptome"
output:
path "amended.${ref_transcriptome}"
"""
sed -i -e 's/|.*//' ${ref_transcriptome}
mv ${ref_transcriptome} "amended.${ref_transcriptome}"
"""
}
process preprocess_reads {
/*
Concatenate reads from a sample directory.
Optionally classify, trim, and orient cDNA reads using pychopper
*/
label "isoforms"
cpus params.threads
memory "2 GB"
input:
tuple val(meta), path('seqs.fastq.gz')
output:
tuple val("${meta.alias}"),
path("${meta.alias}_pychopper_output/${meta.alias}_full_length_reads.fastq"),
emit: full_len_reads
tuple val("${meta.alias}"),
path("${meta.alias}_pychopper_output/"),
emit: pychopper_output
path("${meta.alias}_pychopper_output/pychopper.tsv"),
emit: report
script:
def cdna_kit = params.cdna_kit.split("-")[-1]
def extra_params = params.pychopper_opts ?: ''
"""
pychopper -t ${params.threads} -k ${cdna_kit} -m ${params.pychopper_backend} ${extra_params} 'seqs.fastq.gz' ${meta.alias}_full_length_reads.fastq
workflow-glue generate_pychopper_stats --data pychopper.tsv --output .
# Add sample id column
sed "1s/\$/\tsample_id/; 1 ! s/\$/\t${meta.alias}/" pychopper.tsv > tmp
mv tmp pychopper.tsv
mkdir "${meta.alias}_pychopper_output/"
shopt -s extglob # Allow extended pattern matching so we can exclude files from the mv
mv !("${meta.alias}_pychopper_output"|seqs.fastq.gz) "${meta.alias}_pychopper_output/"
"""
}
process build_minimap_index{
/*
Build minimap index from reference genome
*/
label "isoforms"
cpus params.threads
memory "31 GB"
input:
path reference
output:
path "genome_index.mmi", emit: index
script:
"""
minimap2 -t ${params.threads} ${params.minimap2_index_opts} -I 1000G -d "genome_index.mmi" ${reference}
"""
}
process split_bam{
/*
Partition BAM file into loci or bundles with `params.bundle_min_reads` minimum size
If no splitting required, just create single symbolic link to a single bundle.
Output tuples containing `sample_id` so bundles can be combined later in th pipeline.
*/
label 'isoforms'
cpus params.threads
memory "4 GB"
input:
tuple val(sample_id), path(bam)
output:
tuple val(sample_id), path('*.bam'), emit: bundles
script:
"""
n=`samtools view -c $bam`
if [[ n -lt 1 ]]
then
echo 'There are no reads mapping for $sample_id. Exiting!'
exit 1
fi
re='^[0-9]+\$'
if [[ $params.bundle_min_reads =~ \$re ]]
then
echo "Bundling up the bams"
seqkit bam -j ${params.threads} -N ${params.bundle_min_reads} ${bam} -o bam_bundles/
let i=1
for b in bam_bundles/*.bam; do
echo \$b
newname="${sample_id}_batch_\${i}.bam"
mv \$b \$newname
((i++))
done
else
echo 'no bundling'
ln -s ${bam} ${sample_id}_batch_1.bam
fi
"""
}
process assemble_transcripts{
/*
Assemble transcripts using stringtie.
Take aligned reads in bam format that may be a chunk of a larger alignment file.
Optionally use reference annotation to guide assembly.
Output gff annotation files in a tuple with `sample_id` for combining into samples later in the pipeline.
*/
label 'isoforms'
cpus params.threads
memory "2 GB"
input:
tuple val(sample_id), path(bam), path(ref_annotation)
val use_ref_ann
output:
tuple val(sample_id), path('*.gff'), emit: gff_bundles
script:
def G_FLAG = use_ref_ann == false ? '' : "-G ${ref_annotation}"
def prefix = bam.name.split(/\./)[0]
"""
stringtie --rf ${G_FLAG} -L -v -p ${task.cpus} ${params.stringtie_opts} \
-o ${prefix}.gff -l ${prefix} ${bam}
"""
}
process merge_gff_bundles{
/*
Merge gff bundles into a single gff file per sample, and get summary statistics
*/
label 'isoforms'
cpus params.threads
memory "2 GB"
input:
tuple val(sample_id), path ('gff_bundles/annotation*.gff')
output:
tuple val(sample_id), path("${sample_id}.gff"), emit: gff
tuple val(sample_id), path("transcriptome_summary.pickle"), emit: summary
script:
def merged_gff = "${sample_id}.gff"
"""
echo '##gff-version 2' >> $merged_gff;
echo '#pipeline-nanopore-isoforms: stringtie' >> $merged_gff;
find -L gff_bundles -type f -name "*.gff" \
-exec awk '!/^#/ {print}' {} \\; >> "${sample_id}.gff"
if ! [ -s "${sample_id}.gff" ]; then
echo "No transcripts found for ${sample_id}"
# This is unlikely to ever happen, but if it does, we should fail the workflow.
exit 70
fi
workflow-glue summarise_gff \
$merged_gff \
$sample_id \
transcriptome_summary.pickle
"""
}
process run_gffcompare{
/*
Compare query and reference annotations.
If ref_annotation is an optional file, just make an empty directory to satisfy
the requirements of the downstream processes.
*/
label 'isoforms'
cpus 1
memory "2 GB"
input:
tuple val(sample_id), path(query_annotation)
path ref_annotation
output:
tuple val(sample_id), path("${sample_id}"), emit: gffcmp_dir
path ("${sample_id}_annotated.gtf"), emit: gtf
tuple val(sample_id), path("${sample_id}_transcripts_table.tsv"),
emit: isoforms_table
script:
def out_dir = "${sample_id}"
"""
mkdir $out_dir
echo "Doing comparison of reference annotation: ${ref_annotation} and the query annotation"
gffcompare -o ${out_dir}/str_merged -r ${ref_annotation} \
${params.gffcompare_opts} ${query_annotation}
mv *.tmap "${out_dir}"
mv *.refmap "${out_dir}"
cp "${out_dir}/str_merged.annotated.gtf" "${sample_id}_annotated.gtf"
workflow-glue parse_gffcompare \
--sample_id "${sample_id}" \
--gffcompare_dir "${out_dir}" \
--isoform_table_out "${sample_id}_transcripts_table.tsv" \
--tracking $out_dir/str_merged.tracking \
--annotation ${ref_annotation}
"""
}
process get_transcriptome{
/*
Write out a transcriptome file based on the query gff annotations.
*/
label 'isoforms'
cpus 1
memory "2 GB"
input:
tuple val(sample_id), path("transcripts.gff"), path(gffcompare_dir), path("reference.fa")
output:
tuple val(sample_id), path("*transcriptome.fas"), emit: transcriptome
script:
def transcriptome = "${sample_id}_transcriptome.fas"
def merged_transcriptome = "${sample_id}_merged_transcriptome.fas"
// if no ref_annotation gffcmp_dir will be optional file
// so skip getting transcriptome FASTA from the annotated files.
if (params.ref_annotation){
"""
gffread -F -g reference.fa -w ${merged_transcriptome} $gffcompare_dir/str_merged.annotated.gtf
"""
} else {
"""
gffread -g reference.fa -w ${transcriptome} "transcripts.gff"
"""
}
}
process merge_transcriptomes {
// Merge the transcriptomes from all samples
label 'isoforms'
cpus 2
memory "2 GB"
input:
path "query_annotations/*"
path ref_annotation
path ref_genome
output:
path "final_non_redundant_transcriptome.fasta", emit: fasta
path "stringtie.gtf", emit: gtf
"""
stringtie --rf --merge -G $ref_annotation -p ${task.cpus} -o stringtie.gtf query_annotations/*
seqkit subseq --feature "transcript" --gtf-tag "transcript_id" --gtf stringtie.gtf $ref_genome > temp_transcriptome.fasta
seqkit rmdup -s < temp_transcriptome.fasta > temp_del_repeats.fasta
cat temp_del_repeats.fasta | sed 's/>.* />/' | sed -e 's/_[0-9]* \\[/ \\[/' > temp_rm_empty_seq.fasta
awk 'BEGIN {RS = ">" ; FS = "\\n" ; ORS = ""} \$2 {print ">"\$0}' temp_rm_empty_seq.fasta > "final_non_redundant_transcriptome.fasta"
rm temp_transcriptome.fasta
rm temp_del_repeats.fasta
rm temp_rm_empty_seq.fasta
"""
}
process makeReport {
label "wf_common"
cpus 2
memory "4 GB"
publishDir "${params.out_dir}", mode: 'copy', pattern: "wf-transcriptomes-report.html"
input:
val metadata
path stats, stageAs: "stats_*"
path versions
val wf_version
path "params.json"
path "transcriptome_aln_stats/*"
path pychopper, stageAs: "pychopper_report/*"
path aln_stats, stageAs: "aln_stats/*"
path gffcmp_dir, stageAs: "gffcmp_dir/*"
path gff_annotation, stageAs: "gff_annotation/*"
path de_report, stageAs: "de_report/*"
path isoforms_table, stageAs: "isoforms_table/*"
path transcriptome_summary, stageAs: "transcriptome_summary/summary_*.pkl"
output:
path ("wf-transcriptomes-*.html"), emit: report
path ("results_dge.tsv"), emit: results_dge, optional: true
path ("unfiltered_tpm_transcript_counts.tsv"), emit: tpm, optional: true
path ("unfiltered_transcript_counts_with_genes.tsv"), emit: unfiltered, optional: true
path ("filtered_transcript_counts_with_genes.tsv"), emit: filtered, optional: true
path ("all_gene_counts.tsv"), emit: gene_counts, optional: true
script:
String report_name = "wf-transcriptomes-report.html"
String metadata = new JsonBuilder(metadata).toPrettyString()
String gff_opts = gff_annotation.fileName.name == OPTIONAL_FILE.name ? "" : "--gff_annotation gff_annotation/"
String de_report_opts = de_report.fileName.name == OPTIONAL_FILE.name ? "" : "--de_report de_report/ --de_stats transcriptome_aln_stats/"
String gffcmp_opts = gffcmp_dir.fileName.name == OPTIONAL_FILE.name ? "" : "--gffcompare_dir gffcmp_dir/"
String aln_stats_opts = aln_stats.fileName.name == OPTIONAL_FILE.name ? "" : "--alignment_stats aln_stats/"
String pychop_opts = pychopper.fileName.name == OPTIONAL_FILE.name ? "" : "--pychop_report pychopper_report/"
String iso_table_opts = isoforms_table.fileName.name == OPTIONAL_FILE.name ? "" : "--isoform_table isoforms_table/"
String tr_summary_opts = transcriptome_summary.fileName.name == OPTIONAL_FILE.name ? "" : "--transcriptome_summary transcriptome_summary/"
"""
echo '${metadata}' > metadata.json
workflow-glue report \
--report $report_name \
--versions $versions \
--wf_version $wf_version \
--params params.json \
$aln_stats_opts \
$pychop_opts \
--stats $stats \
--metadata metadata.json \
$gff_opts \
$iso_table_opts \
$gffcmp_opts \
--isoform_table_nrows ${params.isoform_table_nrows} \
$de_report_opts \
$tr_summary_opts
"""
}
// Creates a new directory named after the sample alias and moves the fastcat results
// into it.
process collectFastqIngressResultsInDir {
label "isoforms"
cpus 1
memory "2 GB"
input:
// both the fastcat seqs as well as stats might be `OPTIONAL_FILE` --> stage in
// different sub-directories to avoid name collisions
tuple val(meta), path(concat_seqs, stageAs: "seqs/*"), path(fastcat_stats,
stageAs: "stats/*")
output:
// use sub-dir to avoid name clashes (in the unlikely event of a sample alias
// being `seq` or `stats`)
path "out/*"
script:
String outdir = "out/${meta["alias"]}"
String metaJson = new JsonBuilder(meta).toPrettyString()
String concat_seqs = \
(concat_seqs.fileName.name == OPTIONAL_FILE.name) ? "" : concat_seqs
String fastcat_stats = \
(fastcat_stats.fileName.name == OPTIONAL_FILE.name) ? "" : fastcat_stats
"""
mkdir -p $outdir
echo '$metaJson' > metamap.json
mv metamap.json $concat_seqs $fastcat_stats $outdir
"""
}
// See https://github.com/nextflow-io/nextflow/issues/1636. This is the only way to
// publish files from a workflow whilst decoupling the publish from the process steps.
// The process takes a tuple containing the filename and the name of a sub-directory to
// put the file into. If the latter is `null`, puts it into the top-level directory.
process publish_results {
// publish inputs to output directory
label "isoforms"
cpus 1
memory "2 GB"
publishDir (
params.out_dir,
mode: "copy",
saveAs: { dirname ? "$dirname/$fname" : fname }
)
input:
tuple path(fname), val(dirname)
output:
path fname
"""
"""
}
// Check ref_annotation transcript strand column for "." if in de_analysis mode
process check_annotation_strand {
label "isoforms"
cpus 1
memory "2 GB"
input:
path "ref_annotation.gtf"
output:
tuple stdout, path("ref_annotation.gtf")
"""
awk '{if (\$3=="transcript" && \$7 != "+" && \$7 != "-") print \$3, \$7}' "ref_annotation.gtf"
"""
}
// Process to create the faidx index
process faidx {
// If the input file is gzipped, we need to emit the indexes for the input gzip file
// only. Therefore, this become redundant to be emitted as it won't be used by the
// IGV configuration, but only by internal processes together with the decompressed
// FASTA file. To avoid unnecessary emissions, we enable only if the input file is
// decompressed.
publishDir "${params.out_dir}/igv_reference", mode: 'copy', pattern: "*", enabled: !params.ref_genome.toLowerCase().endsWith("gz")
label "wf_common"
cpus 1
memory 4.GB
input:
path(ref)
output:
path("${ref}.fai")
script:
"""
samtools faidx ${ref}
"""
}
// Process to create the faidx indexes for a gzipped reference
process gz_faidx {
publishDir "${params.out_dir}/igv_reference", mode: 'copy', pattern: "*"
label "wf_common"
cpus 1
memory 4.GB
// If a user provides a non-bgzipped file, the process won't
// generate the indexes. We should tolerate that, still avoid emitting
// the reference and simply have a broken IGV file.
// The gzi is not required to operate the workflow, so we actually tolerate any failure.
errorStrategy 'ignore'
input:
path(ref)
output:
tuple path("${ref}.fai"), path("${ref}.gzi")
script:
"""
samtools faidx ${ref}
"""
}
// workflow module
workflow pipeline {
take:
reads
ref_genome
ref_annotation
ref_transcriptome
use_ref_ann
main:
if (params.ref_genome && file(params.ref_genome).extension == "gz") {
// gzipped ref not supported by some downstream tools
// easier to just decompress and pass it around.
ref_genome = decompress_ref(ref_genome)
}else {
ref_genome = Channel.fromPath(ref_genome)
}
if (params.ref_annotation && file(params.ref_annotation).extension == "gz") {
// gzipped ref not supported by some downstream tools
// easier to just decompress and pass it around.
decompress_annot= decompress_annotation(ref_annotation)
ref_annotation = preprocess_ref_annotation(decompress_annot)
}else {
ref_annotation = preprocess_ref_annotation(ref_annotation)
}
fastq_ingress_results = reads
| collectFastqIngressResultsInDir
// fastq_ingress doesn't have the index; add one extra null for compatibility.
// We do not use variable name as assigning variable name with a tuple
// not matching (e.g. meta, bam, bai, stats <- [meta, bam, stats]) causes
// the workflow to crash.
reads = reads
.map{
it.size() == 4 ? it : [it[0], it[1], null, it[2]]
}
map_sample_ids_cls = {it ->
/* Harmonize tuples
output:
tuple val(sample_id), path('*.gff')
When there are multiple paths, will emit:
[sample_id, [path, path ..]]
when there's a single path, this:
[sample_id, path]
This closure makes both cases:
[[sample_id, path][sample_id, path]].
*/
if (it[1].getClass() != java.util.ArrayList){
// If only one path, `it` will be [sample_id, path]
return [it]
}
l = [];
for (x in it[1]){
l.add(tuple(it[0], x))
}
return l
}
results = Channel.empty()
// Define BAM output Directory
String publish_bams = "BAMS"
software_versions = getVersions()
workflow_params = getParams()
input_reads = reads.map{ meta, samples, index, stats -> [meta, samples]}
sample_ids = input_reads.flatMap({meta,samples -> meta.alias})
if (!params.direct_rna){
preprocess_reads(input_reads)
full_len_reads = preprocess_reads.out.full_len_reads
pychopper_report = preprocess_reads.out.report.collectFile(keepHeader: true)
pychopper_results_dir = preprocess_reads.out.pychopper_output.map{ it -> it[1]}
results = results.concat(pychopper_results_dir)
}
else{
full_len_reads = input_reads.map{ meta, reads -> [meta.alias, reads]}
pychopper_report = OPTIONAL_FILE
}
if (params.transcriptome_source != "precomputed"){
build_minimap_index(ref_genome)
log.info("Doing reference based transcript analysis")
assembly = reference_assembly(build_minimap_index.out.index, ref_genome, full_len_reads)
assembly_stats = assembly.stats.map{ it -> it[1]}.collect()
split_bam(assembly.bam.map {sample_id, bam, bai -> [sample_id, bam]})
assemble_transcripts(split_bam.out.bundles.flatMap(map_sample_ids_cls).combine(ref_annotation),use_ref_ann)
merge_gff_bundles(assemble_transcripts.out.gff_bundles.groupTuple())
transcriptome_summary = merge_gff_bundles.out.summary.map {it[1]}.collect()
// only run gffcompare if ref annotation provided. Otherwise create optional files and channels
if (params.ref_annotation){
run_gffcompare(merge_gff_bundles.out.gff, ref_annotation)
gff_compare_dir = run_gffcompare.out.gffcmp_dir
gff_compare = run_gffcompare.out.gffcmp_dir.map{ it -> it[1]}.collect()
isoforms_table = run_gffcompare.out.isoforms_table.map{ it -> it[1]}.collect()
// create per sample gff tuples with gff compare directories
gff_tuple = merge_gff_bundles.out.gff
.join(gff_compare_dir)
} else {
// create per sample gff tuples with optional files as no ref_annotation
optional_channel = Channel.fromPath("$projectDir/data/OPTIONAL_FILE")
gff_tuple = merge_gff_bundles.out.gff.combine(optional_channel)
gff_compare = OPTIONAL_FILE
isoforms_table = OPTIONAL_FILE
}
// For reference based assembly, there is only one reference
// So map this reference to all sample_ids
seq_for_transcriptome_build = sample_ids.flatten().combine(ref_genome)
get_transcriptome(
gff_tuple
.join(seq_for_transcriptome_build))
merge_gff = merge_gff_bundles.out.gff.map{ it -> it[1]}.collect()
// Output BAMS in a dedicated directory
bam_results = assembly.bam.map{
sample_id, bam, bai -> [bam, bai]}.flatten().map{ [it, publish_bams] }
}
else{
gff_compare = OPTIONAL_FILE
isoforms_table = OPTIONAL_FILE
merge_gff = OPTIONAL_FILE
assembly_stats = OPTIONAL_FILE
transcriptome_summary = OPTIONAL_FILE
use_ref_ann = false
}
if (params.de_analysis){
sample_sheet = file(params.sample_sheet, type:"file")
// check ref annotation contains only + or - strand as DE analysis will error on .
check_annotation_strand(ref_annotation).map { stdoutput, annotation ->
// check if there was an error message
if (stdoutput) error "In ref_annotation, transcript features must have a strand of either '+' or '-'."
stdoutput
}
if (!params.ref_transcriptome){
merge_transcriptomes(run_gffcompare.output.gtf.collect(), ref_annotation, ref_genome)
transcriptome = merge_transcriptomes.out.fasta
gtf = merge_transcriptomes.out.gtf
}
else {
transcriptome = Channel.fromPath(ref_transcriptome)
if (file(params.ref_transcriptome).extension == "gz") {
transcriptome = decompress_transcriptome(ref_transcriptome)
}
transcriptome = preprocess_ref_transcriptome(transcriptome)
gtf = ref_annotation
}
de = differential_expression(transcriptome, input_reads, sample_sheet, gtf)
de_report = de.all_de
de_outputs = de.de_outputs
count_transcripts_file = de.count_transcripts
} else{
de_report = OPTIONAL_FILE
count_transcripts_file = OPTIONAL_FILE
}
// get metadata and stats files, keeping them ordered (could do with transpose I suppose)
reads.multiMap{ meta, path, index, stats ->
meta: meta
stats: stats
}.set { for_report }
metadata = for_report.meta.collect()
stats = for_report.stats.collect()
makeReport(
metadata,
stats,
software_versions,
workflow.manifest.version,
workflow_params,
count_transcripts_file,
pychopper_report,
assembly_stats,
gff_compare,
merge_gff,
de_report,
isoforms_table,
transcriptome_summary)
report = makeReport.out.report
results = results.concat(report)
if (use_ref_ann){
results = run_gffcompare.output.gffcmp_dir.concat(
assembly.stats,
run_gffcompare.out.isoforms_table,
get_transcriptome.out.transcriptome.flatMap(map_sample_ids_cls))
.map {it -> it[1]}
.concat(results)
}
if (!use_ref_ann && params.transcriptome_source == "reference-guided"){
results = assembly.stats.concat(
get_transcriptome.out.transcriptome.flatMap(map_sample_ids_cls))
.map {it -> it[1]}
.concat(results)
}
results = results.map{ [it, null] }.concat(fastq_ingress_results.map { [it, "fastq_ingress_results"] })
if (params.de_analysis){
de_results = report.concat(
transcriptome, de_outputs.flatten(),
makeReport.out.results_dge, makeReport.out.tpm,
makeReport.out.filtered, makeReport.out.unfiltered,
makeReport.out.gene_counts)
// Output de_analysis results in the dedicated directory.
results = results.concat(de_results.map{ [it, "de_analysis"] })
}
results.concat(workflow_params.map{ [it, null]})
// IGV config
if (params.transcriptome_source == "precomputed" && params.igv){
log.warn("IGV configuration does not work if transcriptome sources is set to `precomputed`.")
}
if (params.transcriptome_source != "precomputed" && params.igv){
is_compressed = file("${params.ref_genome}").extension == "gz"
String publish_ref = "igv_reference"
reference_genome = Channel.fromPath("${params.ref_genome}")
igv_ref = reference_genome | flatten | map { it -> "${it.toUriString()}" }
if (is_compressed){
// Define indexes names.
String input_fai_index = "${params.ref_genome}.fai"
String input_gzi_index = "${params.ref_genome}.gzi"
// Check whether the input gzref is indexed. If so, pass these as indexes.
// Otherwise, generate the gzip + fai indexes for the compressed reference.
if (file(input_fai_index).exists() && file(input_gzi_index).exists()){
gzindexes = Channel.fromPath(input_fai_index)
| mix(
Channel.fromPath(input_gzi_index)
)
gz_igv = gzindexes | flatten | map { it -> "${it.toUriString()}" }
} else {
gz_igv = gz_faidx(Channel.fromPath("${params.ref_genome}"))
| flatten
| map { it -> "$publish_ref/${it.Name}" }
gz_igv | ifEmpty{
if (params.containsKey("igv") && params.igv){
log.warn """\
The input reference is compressed but not with bgzip, which is required to create an index.
The workflow will proceed but it will not be possible to load the reference in the IGV Viewer.
To use the IGV Viewer, provide an uncompressed, or bgzip compressed version of the input reference next time you run the workflow.
""".stripIndent()
}
}
}
} else {
gzindexes = Channel.empty()
gz_igv = Channel.empty()
}
// Generate fai index if the file is either compressed, or if fai doesn't exists
if (!is_compressed && file("${params.ref_genome}.fai").exists()){
ref_idx = Channel.fromPath("${params.ref_genome}.fai")
igv_index = ref_idx | flatten | map { it -> "${it.toUriString()}" }
} else {
ref_idx = faidx(reference_genome)
igv_index = ref_idx | map { it -> "$publish_ref/${it.Name}" }
}
// get list of file names
// Absolute paths required for directories
igv_files = reads
| map { meta, sample, index, stats -> meta.alias }
| toSortedList
| map { list -> list.collect{
[
"$publish_bams/${it}_reads_aln_sorted.bam",
"$publish_bams/${it}_reads_aln_sorted.bam.bai"
]
} }
| concat (igv_ref)
| flatten
| concat ( igv_index)
| concat (gz_igv)
| flatten
| collectFile(name: "file-names.txt", newLine: true, sort: false)
// configure IGV
igv_conf = configure_igv(
igv_files,
Channel.of(null), // igv locus
[displayMode: "SQUISHED", colorBy: "strand"], // bam extra opts
Channel.of(null), // vcf extra opts
)
results = results.concat(igv_conf.map{ [it, null]})
results = results.concat(bam_results)
}
emit:
results
}
// entrypoint workflow
WorkflowMain.initialise(workflow, params, log)
workflow {
Pinguscript.ping_start(nextflow, workflow, params)
error = null
if (params.containsValue("jaffal_refBase")) {
error = "JAFFAL fusion detection has been removed from this workflow."
}
if (params.containsKey("minimap_index_opts")) {
error = "`--minimap_index_opts` parameter is deprecated. Use parameter `--minimap2_index_opts` instead."
}
if (params.transcriptome_source == "precomputed" && !params.ref_transcriptome){
error = "As transcriptome source parameter is precomputed you must include a ref_transcriptome parameter"
}
if (params.transcriptome_source == "reference-guided" && !params.ref_genome){
error = "As transcriptome source is reference guided you must include a ref_genome parameter"
}
if (params.ref_genome){
ref_genome = file(params.ref_genome, type: "file")
if (!ref_genome.exists()) {
error = "--ref_genome: File doesn't exist, check path."
}
}else {
ref_genome = OPTIONAL_FILE
}
if (params.containsValue("denovo")) {
error = "Denovo transcriptome source is no longer supported. Please use the reference-guided or precomputed options."
}
if (params.ref_annotation){
ref_annotation = file(params.ref_annotation, type: "file")
if (!ref_annotation.exists()) {
error = "--ref_annotation: File doesn't exist, check path."
}
use_ref_ann = true
}else{
ref_annotation= OPTIONAL_FILE
use_ref_ann = false
}
ref_transcriptome = OPTIONAL_FILE
if (params.ref_transcriptome){
log.info("Reference Transcriptome provided will be used for differential expression.")
ref_transcriptome = file(params.ref_transcriptome, type:"file")
}
if (params.de_analysis){
if (!params.ref_annotation){
error = "When running in --de_analysis mode you must provide a reference annotation."
}
if (!params.sample_sheet){
error = "You must provide a sample_sheet with at least alias and condition columns."
}
if (params.containsKey("condition_sheet")) {
error = "Condition sheets have been deprecated. Please add a 'condition' column to your sample sheet instead. Check the quickstart for more information."
}
} else{
if (!params.ref_annotation){
log.info("Warning: As no --ref_annotation was provided, the output transcripts will not be annotated.")
}
}
if (error){
throw new Exception(error)
}
if (params.fastq) {
samples = fastq_ingress([
"input":params.fastq,
"sample":params.sample,
"sample_sheet":params.sample_sheet,
"analyse_unclassified":params.analyse_unclassified,
"stats": true,
"fastcat_extra_args": "",
"per_read_stats": true])
} else {
samples = xam_ingress([
"input":params.bam,
"sample":params.sample,
"sample_sheet":params.sample_sheet,
"analyse_unclassified":params.analyse_unclassified,
"keep_unaligned": true,
"return_fastq": true,
"stats": true,
"per_read_stats": true])
}
pipeline(samples, ref_genome, ref_annotation, ref_transcriptome, use_ref_ann)
publish_results(pipeline.out.results)
}
workflow.onComplete {
Pinguscript.ping_complete(nextflow, workflow, params)
}
workflow.onError {
Pinguscript.ping_error(nextflow, workflow, params)
}