-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path2. Imperfect Data.scala
412 lines (243 loc) · 8.78 KB
/
2. Imperfect Data.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
// /opt/spark/bin/spark-shell --packages djgarcia:NoiseFramework:1.2,djgarcia:RandomNoise:1.0,djgarcia:SmartFiltering:1.0,JMailloH:Smart_Imputation:1.0,JMailloH:kNN_IS:3.0
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.linalg.{Vector, Vectors}
sc.setLogLevel("ERROR")
// Load Train & Test
val pathTrain = "file:///home/administrador/datasets/susy-10k-tra.data"
val rawDataTrain = sc.textFile(pathTrain)
val pathTest = "file:///home/administrador/datasets/susy-10k-tst.data"
val rawDataTest = sc.textFile(pathTest)
// Train & Test RDDs
val train = rawDataTrain.map{line =>
val array = line.split(",")
var arrayDouble = array.map(f => f.toDouble)
val featureVector = Vectors.dense(arrayDouble.init)
val label = arrayDouble.last
LabeledPoint(label, featureVector)
}.repartition(16)
val test = rawDataTest.map { line =>
val array = line.split(",")
var arrayDouble = array.map(f => f.toDouble)
val featureVector = Vectors.dense(arrayDouble.init)
val label = arrayDouble.last
LabeledPoint(label, featureVector)
}.repartition(16)
train.persist
test.persist
// Encapsulate Learning Algorithms
import org.apache.spark.mllib.tree.DecisionTree
import org.apache.spark.mllib.tree.model.DecisionTreeModel
import org.apache.spark.rdd.RDD
def trainDT(train: RDD[LabeledPoint], test: RDD[LabeledPoint], maxDepth: Int = 5): Double = {
val numClasses = 2
val categoricalFeaturesInfo = Map[Int, Int]()
val impurity = "gini"
val maxBins = 32
val model = DecisionTree.trainClassifier(train, numClasses, categoricalFeaturesInfo, impurity, maxDepth, maxBins)
val labelAndPreds = test.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
}
val testAcc = 1 - labelAndPreds.filter(r => r._1 != r._2).count().toDouble / test.count()
testAcc
}
import org.apache.spark.mllib.classification.kNN_IS.kNN_IS
import org.apache.spark.mllib.evaluation._
import org.apache.spark.rdd.RDD
def trainKNN(train: RDD[LabeledPoint], test: RDD[LabeledPoint], k: Int = 3): Double = {
val numClass = train.map(_.label).distinct().collect().length
val numFeatures = train.first().features.size
val knn = kNN_IS.setup(train, test, k, 2, numClass, numFeatures, train.getNumPartitions, 2, -1, 1)
val predictions = knn.predict(sc)
val metrics = new MulticlassMetrics(predictions)
val precision = metrics.precision
precision
}
// Min & Max values
import org.apache.spark.mllib.stat.{MultivariateStatisticalSummary, Statistics}
val fullDataset = train.union(test)
val summary = Statistics.colStats(fullDataset.map(_.features))
summary.min
summary.max
// Normalize Train & Test
val normalizedTrain = train.map{l =>
val featuresArray = l.features.toArray.zipWithIndex.map{case (v,k) =>
(v - summary.min(k)) / (summary.max(k) - summary.min(k))
}
LabeledPoint(l.label, Vectors.dense(featuresArray))
}
val normalizedTest = test.map{l =>
val featuresArray = l.features.toArray.zipWithIndex.map{case (v,k) =>
(v - summary.min(k)) / (summary.max(k) - summary.min(k))
}
LabeledPoint(l.label, Vectors.dense(featuresArray))
}
// Check Train & Test
val summaryTrain = Statistics.colStats(normalizedTrain.map(_.features))
summaryTrain.min
summaryTrain.max
val summaryTest = Statistics.colStats(normalizedTest.map(_.features))
summaryTest.min
summaryTest.max
val summaryUnion = Statistics.colStats(normalizedTrain.union(normalizedTest).map(_.features))
summaryUnion.min
summaryUnion.max
// DT & kNN Results
trainDT(normalizedTrain, normalizedTest)
trainKNN(normalizedTrain, normalizedTest)
// Add MVs
val mv_pct = 30 // 30% of MVs
val tam = rawDataTrain.count.toInt // Number of instances
val num = math.round(tam * (mv_pct.toDouble / 100)) // Number of MVs
val range = util.Random.shuffle(0 to tam - 1) // Random number gen.
val indices = range.take(num.toInt) // Random instances
val broadcastInd = rawDataTrain.sparkContext.broadcast(indices)
import scala.util.Random
val mvData = rawDataTrain.zipWithIndex.map {
case (v, k) =>
if (broadcastInd.value contains (k)) {
val features = v.split(",").init
val label = v.split(",").last
val mv = features.indexOf(Random.shuffle(features.toList).head)
features(mv) = "?"
features.mkString(",").concat("," + label)
} else {
v
}
}
mvData.persist
val mv_num = mvData.filter(_.contains("?")).count
// Remove MVs
val train_without_mv = mvData.filter(!_.contains("?"))
val trainMV = train_without_mv.map{line =>
val array = line.split(",")
var arrayDouble = array.map(f => f.toDouble)
val featureVector = Vectors.dense(arrayDouble.init)
val label = arrayDouble.last
LabeledPoint(label, featureVector)
}
// Train DT & kNN
trainMV.persist
trainMV.count
trainDT(trainMV, test)
trainKNN(trainMV, test)
// Mean Imputation
val numFeatures = train.first().features.size
var means: Array[Double] = new Array(numFeatures)
for(x <- 0 to numFeatures-1){
means(x) = mvData.map(_.split(",")(x)).filter(v => !v.contains("?")).map(_.toDouble).mean
}
val meanImputedData = mvData.map(_.split(",").zipWithIndex.map{case (v,k)=> if (v == "?") means(k) else v.toDouble})
val mv_num = meanImputedData.filter(_.contains("?")).count
val trainMean = meanImputedData.map{arrayDouble =>
val featureVector = Vectors.dense(arrayDouble.init)
val label = arrayDouble.last
LabeledPoint(label, featureVector)
}
// Train DT & kNN
trainMean.persist
trainMean.count
trainDT(trainMean, test)
trainKNN(trainMean, test)
// kNNI
import org.apache.spark.mllib.preprocessing.kNNI_IS.KNNI_IS
val k = 3
val pathHeader = "/home/administrador/datasets/susy.header"
val knni = KNNI_IS.setup(mvData, k, 2, pathHeader, mvData.getNumPartitions, "local")
val imputedData = knni.imputation(sc)
val mv_num_knni = imputedData.filter(_.contains("?")).count
val trainKNNI = imputedData.map{array =>
val arrayDouble = array.map(f => f.toDouble)
val featureVector = Vectors.dense(arrayDouble.init)
val label = arrayDouble.last
LabeledPoint(label, featureVector)
}
// Train DT & kNN
trainKNNI.persist
trainKNNI.count
trainDT(trainKNNI, test)
trainKNN(trainKNNI, test)
/*****Noise Filtering*****/
import org.apache.spark.mllib.util._
val noise = 20 //(in %)
val noisyModel = new RandomNoise(train, noise)
val noisyData = noisyModel.runNoise()
noisyData.persist()
noisyData.count()
trainDT(train, test, 20)
trainKNN(train, test)
trainDT(noisyData, test, 20)
trainKNN(noisyData, test)
// ENN_BD
import org.apache.spark.mllib.feature._
val k = 3 //number of neighbors
val enn_bd_model = new ENN_BD(noisyData, k)
val enn_bd = enn_bd_model.runFilter()
enn_bd.persist()
enn_bd.count()
trainDT(enn_bd, test, 20)
trainKNN(enn_bd, test)
// NCNEdit_BD
import org.apache.spark.mllib.feature._
val k = 3 //number of neighbors
val ncnedit_bd_model = new NCNEdit_BD(noisyData, k)
val ncnedit_bd = ncnedit_bd_model.runFilter()
ncnedit_bd.persist()
ncnedit_bd.count()
trainDT(ncnedit_bd, test, 20)
trainKNN(ncnedit_bd, test)
// RNG_BD
import org.apache.spark.mllib.feature._
val order = true // Order of the graph (true = first, false = second)
val selType = true // Selection type (true = edition, false = condensation)
val rng_bd_model = new RNG_BD(noisyData, order, selType)
val rng_bd = rng_bd_model.runFilter()
rng_bd.persist()
rng_bd.count()
trainDT(rng_bd, test, 20)
trainKNN(rng_bd, test)
// HME_BD
import org.apache.spark.mllib.feature._
val nTrees = 100
val maxDepthRF = 10
val partitions = 4
val hme_bd_model = new HME_BD(noisyData, nTrees, partitions, maxDepthRF, 48151623)
val hme_bd = hme_bd_model.runFilter()
hme_bd.persist()
hme_bd.count()
trainDT(hme_bd, test, 20)
trainKNN(hme_bd, test)
// HME_BD Clean Data
val hme_bd_model_clean = new HME_BD(train, nTrees, partitions, maxDepthRF, 48151623)
val hme_bd_clean = hme_bd_model_clean .runFilter()
hme_bd_clean.persist()
hme_bd_clean.count()
trainDT(hme_bd_clean, test, 20)
trainKNN(hme_bd_clean, test)
// HTE_BD
import org.apache.spark.mllib.feature._
val nTrees = 100
val maxDepthRF = 10
val partitions = 4
val vote = 0 // 0 = majority, 1 = consensus
val k = 1
val hte_bd_model = new HTE_BD(noisyData, nTrees, partitions, vote, k, maxDepthRF, 48151623)
val hte_bd = hte_bd_model.runFilter()
hte_bd.persist()
hte_bd.count()
trainDT(hte_bd, test, 20)
trainKNN(hte_bd, test)
// HTE_BD Clean Data
import org.apache.spark.mllib.feature._
val nTrees = 100
val maxDepthRF = 10
val partitions = 4
val vote = 0 // 0 = majority, 1 = consensus
val k = 1
val hte_bd_model_clean = new HTE_BD(train, nTrees, partitions, vote, k, maxDepthRF, 48151623)
val hte_bd_clean = hte_bd_model_clean.runFilter()
hte_bd_clean.persist()
hte_bd_clean.count()
trainDT(hte_bd_clean, test, 20)
trainKNN(hte_bd_clean, test)