Skip to content

Latest commit

 

History

History
42 lines (32 loc) · 1.18 KB

README.md

File metadata and controls

42 lines (32 loc) · 1.18 KB

hierarchical-nmf-python

Installation

pip install hnmf

Usage

20 Newsgroups

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from hnmf.model import HierarchicalNMF

n_features = 1000
n_leaves = 20

data, _ = fetch_20newsgroups(shuffle=True, random_state=1,
                             remove=('headers', 'footers', 'quotes'),
                             return_X_y=True)


# Use tf-idf features for NMF.
tfidf = TfidfVectorizer(max_df=0.95, min_df=2,
                                   max_features=n_features,
                                   stop_words='english')

X = tfidf.fit_transform(data)
id2feature = {i: token for i, token in enumerate(tfidf.get_feature_names_out())}

# hNMF
model = HierarchicalNMF(k=n_leaves)
model.fit(X)
model.cluster_features(id2feature=id2feature)

Reference