forked from HumanSignal/label-studio-ml-backend
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_wsgi.py
121 lines (102 loc) · 3.61 KB
/
_wsgi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import argparse
import json
import logging
import logging.config
logging.config.dictConfig({
"version": 1,
"formatters": {
"standard": {
"format": "[%(asctime)s] [%(levelname)s] [%(name)s::%(funcName)s::%(lineno)d] %(message)s"
}
},
"handlers": {
"console": {
"class": "logging.StreamHandler",
"level": os.getenv('LOG_LEVEL'),
"stream": "ext://sys.stdout",
"formatter": "standard"
}
},
"root": {
"level": os.getenv('LOG_LEVEL'),
"handlers": [
"console"
],
"propagate": True
}
})
from label_studio_ml.api import init_app
from model import SklearnTextClassifier
_DEFAULT_CONFIG_PATH = os.path.join(os.path.dirname(__file__), 'config.json')
def get_kwargs_from_config(config_path=_DEFAULT_CONFIG_PATH):
if not os.path.exists(config_path):
return dict()
with open(config_path) as f:
config = json.load(f)
assert isinstance(config, dict)
return config
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Label studio')
parser.add_argument(
'-p', '--port', dest='port', type=int, default=9090,
help='Server port')
parser.add_argument(
'--host', dest='host', type=str, default='0.0.0.0',
help='Server host')
parser.add_argument(
'--kwargs', '--with', dest='kwargs', metavar='KEY=VAL', nargs='+', type=lambda kv: kv.split('='),
help='Additional LabelStudioMLBase model initialization kwargs')
parser.add_argument(
'-d', '--debug', dest='debug', action='store_true',
help='Switch debug mode')
parser.add_argument(
'--log-level', dest='log_level', choices=['DEBUG', 'INFO', 'WARNING', 'ERROR'], default=None,
help='Logging level')
parser.add_argument(
'--model-dir', dest='model_dir', default=os.path.dirname(__file__),
help='Directory where models are stored (relative to the project directory)')
parser.add_argument(
'--check', dest='check', action='store_true',
help='Validate model instance before launching server')
parser.add_argument('--basic-auth-user',
default=os.environ.get('ML_SERVER_BASIC_AUTH_USER', None),
help='Basic auth user')
parser.add_argument('--basic-auth-pass',
default=os.environ.get('ML_SERVER_BASIC_AUTH_PASS', None),
help='Basic auth pass')
args = parser.parse_args()
# setup logging level
if args.log_level:
logging.root.setLevel(args.log_level)
def isfloat(value):
try:
float(value)
return True
except ValueError:
return False
def parse_kwargs():
param = dict()
for k, v in args.kwargs:
if v.isdigit():
param[k] = int(v)
elif v == 'True' or v == 'true':
param[k] = True
elif v == 'False' or v == 'false':
param[k] = False
elif isfloat(v):
param[k] = float(v)
else:
param[k] = v
return param
kwargs = get_kwargs_from_config()
if args.kwargs:
kwargs.update(parse_kwargs())
if args.check:
print('Check "' + SklearnTextClassifier.__name__ + '" instance creation..')
model = SklearnTextClassifier(**kwargs)
app = init_app(model_class=SklearnTextClassifier, basic_auth_user=args.basic_auth_user, basic_auth_pass=args.basic_auth_pass)
app.run(host=args.host, port=args.port, debug=args.debug)
else:
# for uWSGI use
app = init_app(model_class=SklearnTextClassifier)