-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathscore.py
66 lines (48 loc) · 1.97 KB
/
score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
"""
Usage: python -m scripts.score \
--input-fasta examples/example_seqs.fasta \
--output-tsv scores.tsv \
--model-name evo-1-131k-base \
--device cuda:0
Scores sequences in an input FASTA file according to the joint log-likelihood of the
sequences over all tokens. Outputs these log-likelihood scores to a tab-separated
values file.
"""
import argparse
import pandas as pd
from Bio import SeqIO
from tqdm import tqdm
from evo import Evo, score_sequences
def main():
# Parse command-line arguments.
parser = argparse.ArgumentParser(description='Generate sequences using the Evo model.')
parser.add_argument('--input-fasta', required=True, help='Input FASTA file path')
parser.add_argument('--output-tsv', required=True, help='Output path to save tab-separated values')
parser.add_argument('--model-name', type=str, default='evo-1-131k-base', help='Evo model name')
parser.add_argument('--batch-size', type=int, default=32, help='Number of sequences to evaluate at a time')
parser.add_argument('--device', type=str, default='cuda:0', help='Device for generation')
args = parser.parse_args()
# Load model.
evo_model = Evo(args.model_name)
model, tokenizer = evo_model.model, evo_model.tokenizer
model.to(args.device)
model.eval()
# Load sequences.
seqs = [ str(record.seq) for record in SeqIO.parse(args.input_fasta, 'fasta') ]
# Score sequences.
print(f'Scoring {len(seqs)} sequences...')
scores = []
for i in tqdm(range(0, len(seqs), args.batch_size)):
batch_seqs = seqs[i:i + args.batch_size]
batch_scores = score_sequences(
batch_seqs,
model,
tokenizer,
device=args.device,
)
scores.extend(batch_scores)
# Save sequences to the output file.
df = pd.DataFrame({ 'seqs': seqs, 'scores': scores })
df.to_csv(args.output_tsv, sep='\t', index=False)
if __name__ == '__main__':
main()