forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinstancing.cpp
617 lines (520 loc) · 22.5 KB
/
instancing.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
/*
* Vulkan Example - Instanced mesh rendering, uses a separate vertex buffer for instanced data
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <time.h>
#include <vector>
#include <random>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanBuffer.hpp"
#include "VulkanTexture.hpp"
#include "VulkanModel.hpp"
#define VERTEX_BUFFER_BIND_ID 0
#define INSTANCE_BUFFER_BIND_ID 1
#define ENABLE_VALIDATION false
#if defined(__ANDROID__)
#define INSTANCE_COUNT 4096
#else
#define INSTANCE_COUNT 8192
#endif
class VulkanExample : public VulkanExampleBase
{
public:
struct {
vks::Texture2DArray rocks;
vks::Texture2D planet;
} textures;
// Vertex layout for the models
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION,
vks::VERTEX_COMPONENT_NORMAL,
vks::VERTEX_COMPONENT_UV,
vks::VERTEX_COMPONENT_COLOR,
});
struct {
vks::Model rock;
vks::Model planet;
} models;
// Per-instance data block
struct InstanceData {
glm::vec3 pos;
glm::vec3 rot;
float scale;
uint32_t texIndex;
};
// Contains the instanced data
struct InstanceBuffer {
VkBuffer buffer = VK_NULL_HANDLE;
VkDeviceMemory memory = VK_NULL_HANDLE;
size_t size = 0;
VkDescriptorBufferInfo descriptor;
} instanceBuffer;
struct UBOVS {
glm::mat4 projection;
glm::mat4 view;
glm::vec4 lightPos = glm::vec4(0.0f, -5.0f, 0.0f, 1.0f);
float locSpeed = 0.0f;
float globSpeed = 0.0f;
} uboVS;
struct {
vks::Buffer scene;
} uniformBuffers;
VkPipelineLayout pipelineLayout;
struct {
VkPipeline instancedRocks;
VkPipeline planet;
VkPipeline starfield;
} pipelines;
VkDescriptorSetLayout descriptorSetLayout;
struct {
VkDescriptorSet instancedRocks;
VkDescriptorSet planet;
} descriptorSets;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Instanced mesh rendering";
zoom = -18.5f;
rotation = { -17.2f, -4.7f, 0.0f };
cameraPos = { 5.5f, -1.85f, 0.0f };
rotationSpeed = 0.25f;
settings.overlay = true;
}
~VulkanExample()
{
vkDestroyPipeline(device, pipelines.instancedRocks, nullptr);
vkDestroyPipeline(device, pipelines.planet, nullptr);
vkDestroyPipeline(device, pipelines.starfield, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkDestroyBuffer(device, instanceBuffer.buffer, nullptr);
vkFreeMemory(device, instanceBuffer.memory, nullptr);
models.rock.destroy();
models.planet.destroy();
textures.rocks.destroy();
textures.planet.destroy();
uniformBuffers.scene.destroy();
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
// Enable anisotropic filtering if supported
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
}
// Enable texture compression
if (deviceFeatures.textureCompressionBC) {
enabledFeatures.textureCompressionBC = VK_TRUE;
}
else if (deviceFeatures.textureCompressionASTC_LDR) {
enabledFeatures.textureCompressionASTC_LDR = VK_TRUE;
}
else if (deviceFeatures.textureCompressionETC2) {
enabledFeatures.textureCompressionETC2 = VK_TRUE;
}
};
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
// Star field
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.planet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.starfield);
vkCmdDraw(drawCmdBuffers[i], 4, 1, 0, 0);
// Planet
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.planet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.planet);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.planet.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.planet.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], models.planet.indexCount, 1, 0, 0, 0);
// Instanced rocks
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.instancedRocks, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.instancedRocks);
// Binding point 0 : Mesh vertex buffer
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.rock.vertices.buffer, offsets);
// Binding point 1 : Instance data buffer
vkCmdBindVertexBuffers(drawCmdBuffers[i], INSTANCE_BUFFER_BIND_ID, 1, &instanceBuffer.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.rock.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
// Render instances
vkCmdDrawIndexed(drawCmdBuffers[i], models.rock.indexCount, INSTANCE_COUNT, 0, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
models.rock.loadFromFile(getAssetPath() + "models/rock01.dae", vertexLayout, 0.1f, vulkanDevice, queue);
models.planet.loadFromFile(getAssetPath() + "models/sphere.obj", vertexLayout, 0.2f, vulkanDevice, queue);
// Textures
std::string texFormatSuffix;
VkFormat texFormat;
// Get supported compressed texture format
if (vulkanDevice->features.textureCompressionBC) {
texFormatSuffix = "_bc3_unorm";
texFormat = VK_FORMAT_BC3_UNORM_BLOCK;
}
else if (vulkanDevice->features.textureCompressionASTC_LDR) {
texFormatSuffix = "_astc_8x8_unorm";
texFormat = VK_FORMAT_ASTC_8x8_UNORM_BLOCK;
}
else if (vulkanDevice->features.textureCompressionETC2) {
texFormatSuffix = "_etc2_unorm";
texFormat = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK;
}
else {
vks::tools::exitFatal("Device does not support any compressed texture format!", VK_ERROR_FEATURE_NOT_PRESENT);
}
textures.rocks.loadFromFile(getAssetPath() + "textures/texturearray_rocks" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue);
textures.planet.loadFromFile(getAssetPath() + "textures/lavaplanet" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue);
}
void setupDescriptorPool()
{
// Example uses one ubo
std::vector<VkDescriptorPoolSize> poolSizes =
{
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader combined sampler
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo descripotrSetAllocInfo;
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
descripotrSetAllocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);;
// Instanced rocks
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descripotrSetAllocInfo, &descriptorSets.instancedRocks));
writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.instancedRocks, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor), // Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.instancedRocks, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.rocks.descriptor) // Binding 1 : Color map
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Planet
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descripotrSetAllocInfo, &descriptorSets.planet));
writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.planet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor), // Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.planet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.planet.descriptor) // Binding 1 : Color map
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vks::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
// This example uses two different input states, one for the instanced part and one for non-instanced rendering
VkPipelineVertexInputStateCreateInfo inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
// Vertex input bindings
// The instancing pipeline uses a vertex input state with two bindings
bindingDescriptions = {
// Binding point 0: Mesh vertex layout description at per-vertex rate
vks::initializers::vertexInputBindingDescription(VERTEX_BUFFER_BIND_ID, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX),
// Binding point 1: Instanced data at per-instance rate
vks::initializers::vertexInputBindingDescription(INSTANCE_BUFFER_BIND_ID, sizeof(InstanceData), VK_VERTEX_INPUT_RATE_INSTANCE)
};
// Vertex attribute bindings
// Note that the shader declaration for per-vertex and per-instance attributes is the same, the different input rates are only stored in the bindings:
// instanced.vert:
// layout (location = 0) in vec3 inPos; Per-Vertex
// ...
// layout (location = 4) in vec3 instancePos; Per-Instance
attributeDescriptions = {
// Per-vertex attributees
// These are advanced for each vertex fetched by the vertex shader
vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0: Position
vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 1: Normal
vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6), // Location 2: Texture coordinates
vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8), // Location 3: Color
// Per-Instance attributes
// These are fetched for each instance rendered
vks::initializers::vertexInputAttributeDescription(INSTANCE_BUFFER_BIND_ID, 4, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 4: Position
vks::initializers::vertexInputAttributeDescription(INSTANCE_BUFFER_BIND_ID, 5, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 5: Rotation
vks::initializers::vertexInputAttributeDescription(INSTANCE_BUFFER_BIND_ID, 6, VK_FORMAT_R32_SFLOAT,sizeof(float) * 6), // Location 6: Scale
vks::initializers::vertexInputAttributeDescription(INSTANCE_BUFFER_BIND_ID, 7, VK_FORMAT_R32_SINT, sizeof(float) * 7), // Location 7: Texture array layer index
};
inputState.pVertexBindingDescriptions = bindingDescriptions.data();
inputState.pVertexAttributeDescriptions = attributeDescriptions.data();
pipelineCreateInfo.pVertexInputState = &inputState;
// Instancing pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/instancing/instancing.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/instancing/instancing.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Use all input bindings and attribute descriptions
inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(bindingDescriptions.size());
inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(attributeDescriptions.size());
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.instancedRocks));
// Planet rendering pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/instancing/planet.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/instancing/planet.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Only use the non-instanced input bindings and attribute descriptions
inputState.vertexBindingDescriptionCount = 1;
inputState.vertexAttributeDescriptionCount = 4;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.planet));
// Star field pipeline
rasterizationState.cullMode = VK_CULL_MODE_NONE;
depthStencilState.depthWriteEnable = VK_FALSE;
shaderStages[0] = loadShader(getAssetPath() + "shaders/instancing/starfield.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/instancing/starfield.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Vertices are generated in the vertex shader
inputState.vertexBindingDescriptionCount = 0;
inputState.vertexAttributeDescriptionCount = 0;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.starfield));
}
void prepareInstanceData()
{
std::vector<InstanceData> instanceData;
instanceData.resize(INSTANCE_COUNT);
std::default_random_engine rndGenerator(benchmark.active ? 0 : (unsigned)time(nullptr));
std::uniform_real_distribution<float> uniformDist(0.0, 1.0);
std::uniform_int_distribution<uint32_t> rndTextureIndex(0, textures.rocks.layerCount);
// Distribute rocks randomly on two different rings
for (auto i = 0; i < INSTANCE_COUNT / 2; i++) {
glm::vec2 ring0 { 7.0f, 11.0f };
glm::vec2 ring1 { 14.0f, 18.0f };
float rho, theta;
// Inner ring
rho = sqrt((pow(ring0[1], 2.0f) - pow(ring0[0], 2.0f)) * uniformDist(rndGenerator) + pow(ring0[0], 2.0f));
theta = 2.0 * M_PI * uniformDist(rndGenerator);
instanceData[i].pos = glm::vec3(rho*cos(theta), uniformDist(rndGenerator) * 0.5f - 0.25f, rho*sin(theta));
instanceData[i].rot = glm::vec3(M_PI * uniformDist(rndGenerator), M_PI * uniformDist(rndGenerator), M_PI * uniformDist(rndGenerator));
instanceData[i].scale = 1.5f + uniformDist(rndGenerator) - uniformDist(rndGenerator);
instanceData[i].texIndex = rndTextureIndex(rndGenerator);
instanceData[i].scale *= 0.75f;
// Outer ring
rho = sqrt((pow(ring1[1], 2.0f) - pow(ring1[0], 2.0f)) * uniformDist(rndGenerator) + pow(ring1[0], 2.0f));
theta = 2.0 * M_PI * uniformDist(rndGenerator);
instanceData[i + INSTANCE_COUNT / 2].pos = glm::vec3(rho*cos(theta), uniformDist(rndGenerator) * 0.5f - 0.25f, rho*sin(theta));
instanceData[i + INSTANCE_COUNT / 2].rot = glm::vec3(M_PI * uniformDist(rndGenerator), M_PI * uniformDist(rndGenerator), M_PI * uniformDist(rndGenerator));
instanceData[i + INSTANCE_COUNT / 2].scale = 1.5f + uniformDist(rndGenerator) - uniformDist(rndGenerator);
instanceData[i + INSTANCE_COUNT / 2].texIndex = rndTextureIndex(rndGenerator);
instanceData[i + INSTANCE_COUNT / 2].scale *= 0.75f;
}
instanceBuffer.size = instanceData.size() * sizeof(InstanceData);
// Staging
// Instanced data is static, copy to device local memory
// This results in better performance
struct {
VkDeviceMemory memory;
VkBuffer buffer;
} stagingBuffer;
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
instanceBuffer.size,
&stagingBuffer.buffer,
&stagingBuffer.memory,
instanceData.data()));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
instanceBuffer.size,
&instanceBuffer.buffer,
&instanceBuffer.memory));
// Copy to staging buffer
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy copyRegion = { };
copyRegion.size = instanceBuffer.size;
vkCmdCopyBuffer(
copyCmd,
stagingBuffer.buffer,
instanceBuffer.buffer,
1,
©Region);
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
instanceBuffer.descriptor.range = instanceBuffer.size;
instanceBuffer.descriptor.buffer = instanceBuffer.buffer;
instanceBuffer.descriptor.offset = 0;
// Destroy staging resources
vkDestroyBuffer(device, stagingBuffer.buffer, nullptr);
vkFreeMemory(device, stagingBuffer.memory, nullptr);
}
void prepareUniformBuffers()
{
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.scene,
sizeof(uboVS)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.scene.map());
updateUniformBuffer(true);
}
void updateUniformBuffer(bool viewChanged)
{
if (viewChanged)
{
uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f);
uboVS.view = glm::translate(glm::mat4(1.0f), cameraPos + glm::vec3(0.0f, 0.0f, zoom));
uboVS.view = glm::rotate(uboVS.view, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVS.view = glm::rotate(uboVS.view, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboVS.view = glm::rotate(uboVS.view, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
}
if (!paused)
{
uboVS.locSpeed += frameTimer * 0.35f;
uboVS.globSpeed += frameTimer * 0.01f;
}
memcpy(uniformBuffers.scene.mapped, &uboVS, sizeof(uboVS));
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareInstanceData();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
{
return;
}
draw();
if (!paused)
{
updateUniformBuffer(false);
}
}
virtual void viewChanged()
{
updateUniformBuffer(true);
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Statistics")) {
overlay->text("Instances: %d", INSTANCE_COUNT);
}
}
};
VULKAN_EXAMPLE_MAIN()