-
Notifications
You must be signed in to change notification settings - Fork 373
/
Copy pathdemo.py
106 lines (96 loc) · 3.22 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
A main inference script for rcnn models
"""
import glob
import os
import click
import tqdm
from configs import get_cfg_defaults
from predictor import Predictor
@click.command()
@click.option("--config", default="", metavar="FILE", help="path to config file")
@click.option("--bench-config", default="", metavar="FILE", help="path to config file")
@click.option(
"--input",
multiple=True,
help="A list of space separated input images; "
"or a single glob pattern such as 'directory/*.jpg'",
)
@click.option(
"--output",
help="A file or directory to save output visualizations. "
"If not given, will show output in an OpenCV window.",
)
@click.option(
"--confidence-threshold",
type=float,
default=0.5,
help="Minimum score for instance predictions to be shown",
)
@click.option("--weight", default="", metavar="FILE", help="path to model weights")
@click.option("--batch", default=0, help="batch size")
@click.option("--display/--no-display", default=False, help="display results")
@click.option("--cudagraph/--no-cudagraph", default=False, help="enable CUDA graph")
def run_model(
config,
bench_config,
input,
output,
confidence_threshold,
weight,
batch,
display,
cudagraph,
):
cfg = get_cfg_defaults()
cfg.merge_from_file(config)
if bench_config != "":
cfg.merge_from_file(bench_config)
if batch > 0:
cfg.SOLVER.IMS_PER_BATCH = batch
cfg.MODEL.WEIGHTS = weight
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = confidence_threshold
cfg.freeze()
assert (
weight != ""
), "export model first: python convert_pt2ait.py model_d2.pkl params_ait.pkl \
--config configs/faster_rcnn_R_50_DC5.yaml"
demo = Predictor(cfg)
print("run {} end2end".format(cfg.MODEL.NAME))
cnt = 0
duration = 0
detections = {}
bs = cfg.SOLVER.IMS_PER_BATCH
if input:
if len(input) == 1:
input = glob.glob(os.path.expanduser(input[0]))
assert input, "The input path(s) was not found"
batch_data = demo.data_loader(input)
print("{} images, run {} batch".format(len(input), len(batch_data)))
for batch in tqdm.tqdm(batch_data, disable=not output):
results = demo.run_batch(batch, cudagraph)
detections.update(results)
if display:
demo.visualize(results)
duration += demo.benchmark(batch["data"], 10, cudagraph)
cnt += 1
duration /= cnt * bs
print(
f"AIT Detection: Batch size: {bs}, Time per iter: {duration:.2f} ms, FPS: {1000 / duration:.2f}"
)
if __name__ == "__main__":
run_model()