-
Notifications
You must be signed in to change notification settings - Fork 104
/
Copy pathdata_readers.py
87 lines (75 loc) · 3.91 KB
/
data_readers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from torch.utils.data import Dataset
# These input-data-processing classes take input data from a text file and convert them to the format
# appropriate for the recognition and discrimination games, so that they can be read by
# the standard pytorch DataLoader. The latter requires the data reading classes to support
# a __len__(self) method, returning the size of the dataset, and a __getitem__(self, idx)
# method, returning the idx-th item in the dataset. We also provide a get_n_features(self) method,
# returning the dimensionality of the Sender input vector after it is transformed to one-hot format.
# The AttValRecoDataset class is used in the reconstruction game. It takes an input file with a
# space-delimited attribute-value vector per line and creates a data-frame with the two mandatory
# fields expected in EGG games, namely sender_input and labels.
# In this case, the two fields contain the same information, namely the input attribute-value vectors,
# represented as one-hot in sender_input, and in the original integer-based format in
# labels.
class AttValRecoDataset(Dataset):
def __init__(self, path, n_attributes, n_values):
frame = np.loadtxt(path, dtype="S10")
self.frame = []
for row in frame:
if n_attributes == 1:
row = row.split()
config = list(map(int, row))
z = torch.zeros((n_attributes, n_values))
for i in range(n_attributes):
z[i, config[i]] = 1
label = torch.tensor(list(map(int, row)))
self.frame.append((z.view(-1), label))
def get_n_features(self):
return self.frame[0][0].size(0)
def __len__(self):
return len(self.frame)
def __getitem__(self, idx):
return self.frame[idx]
# The AttValDiscriDataset class, used in the discrimination game takes an input file with a variable
# number of period-delimited fields, where all fields but the last represent attribute-value vectors
# (with space-delimited attributes). The last field contains the index (counting from 0) of the target
# vector.
# Here, we create a data-frame containing 3 fields: sender_input, labels and receiver_input (these are
# expected by EGG, the first two mandatorily so).
# The sender_input corresponds to the target vector (in one-hot format), labels are the indices of the
# target vector location and receiver_input is a matrix with a row for each input vector (in input order).
class AttValDiscriDataset(Dataset):
def __init__(self, path, n_values):
frame = open(path, "r")
self.frame = []
for row in frame:
raw_info = row.split(".")
index_vectors = list([list(map(int, x.split())) for x in raw_info[:-1]])
target_index = int(raw_info[-1])
target_one_hot = []
for index in index_vectors[target_index]:
current = np.zeros(n_values)
current[index] = 1
target_one_hot = np.concatenate((target_one_hot, current))
target_one_hot_tensor = torch.FloatTensor(target_one_hot)
one_hot = []
for index_vector in index_vectors:
for index in index_vector:
current = np.zeros(n_values)
current[index] = 1
one_hot = np.concatenate((one_hot, current))
one_hot_sequence = torch.FloatTensor(one_hot).view(len(index_vectors), -1)
label = torch.tensor(target_index)
self.frame.append((target_one_hot_tensor, label, one_hot_sequence))
frame.close()
def get_n_features(self):
return self.frame[0][0].size(0)
def __len__(self):
return len(self.frame)
def __getitem__(self, idx):
return self.frame[idx]