-
Notifications
You must be signed in to change notification settings - Fork 104
/
Copy pathtrain.py
202 lines (172 loc) · 6.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
this script is a modification of `compo_vs_generalization/train.py`
"""
import argparse
import torch
from torch.utils.data import DataLoader
import egg.zoo.compo_vs_generalization_ood.archs
from egg import core
from egg.core import EarlyStopperAccuracy
from egg.zoo.compo_vs_generalization.data import (
ScaledDataset,
enumerate_attribute_value,
one_hotify,
split_holdout,
split_train_test,
)
from egg.zoo.compo_vs_generalization.intervention import Evaluator, Metrics
from egg.zoo.compo_vs_generalization.train import DiffLoss
def get_params(params):
parser = argparse.ArgumentParser()
parser.add_argument("--n_attributes", type=int, default=4, help="")
parser.add_argument("--n_values", type=int, default=4, help="")
parser.add_argument("--data_scaler", type=int, default=100)
parser.add_argument("--stats_freq", type=int, default=0)
parser.add_argument(
"--hidden",
type=int,
default=50,
help="Size of the hidden layer of Sender (default: 10)",
)
parser.add_argument(
"--sender_entropy_coeff",
type=float,
default=1e-2,
help="Entropy regularisation coeff for Sender (default: 1e-2)",
)
parser.add_argument("--sender", type=str)
parser.add_argument("--receiver", type=str)
parser.add_argument(
"--sender_emb",
type=int,
default=10,
help="Size of the embeddings of Sender (default: 10)",
)
parser.add_argument(
"--receiver_emb",
type=int,
default=10,
help="Size of the embeddings of Receiver (default: 10)",
)
parser.add_argument(
"--early_stopping_thr",
type=float,
default=0.99999,
help="Early stopping threshold on accuracy (defautl: 0.99999)",
)
args = core.init(arg_parser=parser, params=params)
return args
def get_data(opts):
"""
creating all possible ordered pairs for given n_values.
Splitting the pairs into:
generalization_holdout ... all pairs with a zero, not including three pairs:
[(0,0), (0,1), (1,0)]
uniform_holdout ... 10% of pairs without a zero (e.g. (42,13), (13,1), ...)
train ... 90% of pairs without a zero plus three pairs with a zero
(e.g. (0,0), (0,1), (1,0), (23,1), (2,43), ...)
"""
full_data = enumerate_attribute_value(opts.n_attributes, opts.n_values)
train, generalization_holdout = split_holdout(full_data)
train, uniform_holdout = split_train_test(train, 0.1)
assert opts.n_attributes == 2
additional_training_pairs = [(0, 0), (0, 1), (1, 0)]
train = additional_training_pairs + train
for pair in additional_training_pairs[1:]:
# (0 , 0) is not in generalization_holdout
generalization_holdout.remove(pair)
return full_data, train, uniform_holdout, generalization_holdout
def main(params):
opts = get_params(params)
print(opts)
full_data, train, uniform_holdout, generalization_holdout = get_data(opts)
generalization_holdout, train, uniform_holdout, full_data = [
one_hotify(x, opts.n_attributes, opts.n_values)
for x in [generalization_holdout, train, uniform_holdout, full_data]
]
train, validation = ScaledDataset(train, opts.data_scaler), ScaledDataset(train, 1)
generalization_holdout, uniform_holdout, full_data = (
ScaledDataset(generalization_holdout),
ScaledDataset(uniform_holdout),
ScaledDataset(full_data),
)
generalization_holdout_loader, uniform_holdout_loader, full_data_loader = [
DataLoader(x, batch_size=opts.batch_size)
for x in [generalization_holdout, uniform_holdout, full_data]
]
train_loader = DataLoader(train, batch_size=opts.batch_size, shuffle=True)
validation_loader = DataLoader(validation, batch_size=len(validation))
loss = DiffLoss(opts.n_attributes, opts.n_values)
sender = getattr(egg.zoo.compo_vs_generalization_ood.archs, opts.sender)(opts)
receiver = getattr(egg.zoo.compo_vs_generalization_ood.archs, opts.receiver)(opts)
game = core.SenderReceiverRnnReinforce(
sender,
receiver,
loss,
sender_entropy_coeff=opts.sender_entropy_coeff,
receiver_entropy_coeff=0.0,
length_cost=0.0,
baseline_type=core.baselines.MeanBaseline,
)
optimizer = torch.optim.Adam(game.parameters(), lr=opts.lr)
metrics_evaluator = Metrics(
validation.examples,
opts.device,
opts.n_attributes,
opts.n_values,
opts.vocab_size + 1,
freq=opts.stats_freq,
)
metrics_evaluator_generalization_holdout = Metrics(
generalization_holdout.examples,
opts.device,
opts.n_attributes,
opts.n_values,
opts.vocab_size + 1,
freq=opts.stats_freq,
)
loaders = []
loaders.append(
(
"generalization hold out",
generalization_holdout_loader,
# DiffLoss(opts.n_attributes, opts.n_values, generalization=True),
# we don't want to ignore zeros:
DiffLoss(opts.n_attributes, opts.n_values, generalization=False),
)
)
loaders.append(
(
"uniform holdout",
uniform_holdout_loader,
DiffLoss(opts.n_attributes, opts.n_values),
)
)
holdout_evaluator = Evaluator(loaders, opts.device, freq=1)
early_stopper = EarlyStopperAccuracy(opts.early_stopping_thr, validation=True)
trainer = core.Trainer(
game=game,
optimizer=optimizer,
train_data=train_loader,
validation_data=validation_loader,
callbacks=[
# print validation (i.e. unscaled training data) loss:
core.ConsoleLogger(as_json=True, print_train_loss=False),
early_stopper,
# print compositionality metrics at the end of training
# (validation, i.e, unscaled training data):
metrics_evaluator,
# print compositionality metrics at the end of training (holdout data):
metrics_evaluator_generalization_holdout,
# print generalization and uniform holdout accuracies at each epoch:
holdout_evaluator,
],
)
trainer.train(n_epochs=opts.n_epochs)
core.close()
if __name__ == "__main__":
import sys
main(sys.argv[1:])