-
Notifications
You must be signed in to change notification settings - Fork 104
/
Copy pathlosses.py
62 lines (48 loc) · 1.94 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import torch.nn.functional as F
class Loss:
def __init__(
self, batch_size: int, temperature: float = 0.1, similarity: str = "cosine"
):
self.temperature = temperature
self.batch_size = batch_size
similarities = {"cosine", "dot"}
assert (
similarity.lower() in similarities
), "Cannot recognize similarity function {similarity}"
self.similarity = similarity
def __call__(
self,
_sender_input,
message,
_receiver_input,
receiver_output,
_labels,
_aux_input,
):
input = torch.cat((message, receiver_output), dim=0)
if self.similarity == "cosine":
similarity_f = nn.CosineSimilarity(dim=2)
similarity_matrix = (
similarity_f(input.unsqueeze(1), input.unsqueeze(0)) / self.temperature
)
elif self.similarity == "dot":
similarity_matrix = input @ input.t()
sim_i_j = torch.diag(similarity_matrix, self.batch_size)
sim_j_i = torch.diag(similarity_matrix, -self.batch_size)
positive_samples = torch.cat((sim_i_j, sim_j_i), dim=0).reshape(
self.batch_size * 2, 1
)
mask = torch.ones(
(self.batch_size * 2, self.batch_size * 2), dtype=bool
).fill_diagonal_(0)
negative_samples = similarity_matrix[mask].reshape(self.batch_size * 2, -1)
labels = torch.zeros(self.batch_size * 2).to(positive_samples.device).long()
logits = torch.cat((positive_samples, negative_samples), dim=1)
loss = F.cross_entropy(logits, labels, reduction="none") / 2
acc = (torch.argmax(logits.detach(), dim=1) == labels).float()
return loss, {"acc": acc}