This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathrun_exp.py
520 lines (434 loc) · 17.8 KB
/
run_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Must be run with OMP_NUM_THREADS=1
#
'''
For debugging the env using random actions run:
OMP_NUM_THREADS=1 python torchbeast.py --env MiniGrid-MultiRoom-N2-S4-v0 --num_actors 1 --num_threads 1 --random_agent --mode test
'''
import argparse
import logging
import os
import sys
import tqdm
import importlib
os.environ['OMP_NUM_THREADS'] = '1'
import threading
import time
import timeit
import traceback
import pprint
import typing
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torch import multiprocessing as mp
import gym
import random
import exp_utils
from rtfm import tasks
from core import environment
from core import file_writer
from core import prof
from core import vtrace
Net = None
logging.basicConfig(
format=('[%(levelname)s:%(process)d %(module)s:%(lineno)d %(asctime)s] '
'%(message)s'),
level=0)
Buffers = typing.Dict[str, typing.List[torch.Tensor]]
def compute_baseline_loss(advantages):
# Take the mean over batch, sum over time.
return 0.5 * torch.sum(torch.mean(advantages ** 2, dim=1))
def compute_entropy_loss(logits):
policy = F.softmax(logits, dim=-1)
log_policy = F.log_softmax(logits, dim=-1)
entropy_per_timestep = torch.sum(-policy * log_policy, dim=-1)
return -torch.sum(torch.mean(entropy_per_timestep, dim=1))
def compute_policy_gradient_loss(logits, actions, advantages):
cross_entropy = F.nll_loss(
F.log_softmax(torch.flatten(logits, 0, 1), dim=-1),
target=torch.flatten(actions, 0, 1),
reduction='none')
cross_entropy = cross_entropy.view_as(advantages)
advantages.requires_grad = False
policy_gradient_loss_per_timestep = cross_entropy * advantages
return torch.sum(torch.mean(policy_gradient_loss_per_timestep, dim=1))
def act(i: int, free_queue: mp.SimpleQueue, full_queue: mp.SimpleQueue,
model: torch.nn.Module, buffers: Buffers, flags):
try:
logging.info('Actor %i started.', i)
timings = prof.Timings() # Keep track of how fast things are.
gym_env = Net.create_env(flags)
seed = i ^ int.from_bytes(os.urandom(4), byteorder='little')
gym_env.seed(seed)
env = environment.Environment(gym_env)
env_output = env.initial()
agent_output = model(env_output)
while True:
index = free_queue.get()
if index is None:
break
# Write old rollout end.
for key in env_output:
buffers[key][index][0, ...] = env_output[key]
for key in agent_output:
buffers[key][index][0, ...] = agent_output[key]
# Do new rollout
for t in range(flags.unroll_length):
timings.reset()
with torch.no_grad():
agent_output = model(env_output)
timings.time('model')
env_output = env.step(agent_output['action'])
timings.time('step')
for key in env_output:
buffers[key][index][t + 1, ...] = env_output[key]
for key in agent_output:
buffers[key][index][t + 1, ...] = agent_output[key]
timings.time('write')
full_queue.put(index)
if i == 0:
logging.info('Actor %i: %s', i, timings.summary())
except KeyboardInterrupt:
pass # Return silently.
except Exception as e:
logging.error('Exception in worker process %i', i)
traceback.print_exc()
print()
raise e
def get_batch(free_queue: mp.SimpleQueue,
full_queue: mp.SimpleQueue,
buffers: Buffers,
flags,
timings,
lock=threading.Lock()) -> typing.Dict[str, torch.Tensor]:
with lock:
timings.time('lock')
indices = [full_queue.get() for _ in range(flags.batch_size)]
timings.time('dequeue')
batch = {
key: torch.stack([buffers[key][m] for m in indices], dim=1)
for key in buffers
}
timings.time('batch')
for m in indices:
free_queue.put(m)
timings.time('enqueue')
batch = {
k: t.to(device=flags.device, non_blocking=True)
for k, t in batch.items()
}
timings.time('device')
return batch
def learn(actor_model,
model,
batch,
optimizer,
scheduler,
flags,
lock=threading.Lock()):
"""Performs a learning (optimization) step."""
with lock:
learner_outputs = model(batch)
# Use last baseline value (from the value function) to bootstrap.
bootstrap_value = learner_outputs['baseline'][-1]
# At this point, the environment outputs at time step `t` are the inputs
# that lead to the learner_outputs at time step `t`. After the following
# shifting, the actions in actor_batch and learner_outputs at time
# step `t` is what leads to the environment outputs at time step `t`.
batch = {key: tensor[1:] for key, tensor in batch.items()}
learner_outputs = {
key: tensor[:-1]
for key, tensor in learner_outputs.items()
}
rewards = batch['reward']
if flags.reward_clipping == 'abs_one':
clipped_rewards = torch.clamp(rewards, -1, 1)
elif flags.reward_clipping == 'soft_asymmetric':
squeezed = torch.tanh(rewards / 5.0)
# Negative rewards are given less weight than positive rewards.
clipped_rewards = torch.where(rewards < 0, 0.3 * squeezed,
squeezed) * 5.0
elif flags.reward_clipping == 'none':
clipped_rewards = rewards
discounts = (~batch['done']).float() * flags.discounting
# This could be in C++. In TF, this is actually slower on the GPU.
vtrace_returns = vtrace.from_logits(
behavior_policy_logits=batch['policy_logits'],
target_policy_logits=learner_outputs['policy_logits'],
actions=batch['action'],
discounts=discounts,
rewards=clipped_rewards,
values=learner_outputs['baseline'],
bootstrap_value=bootstrap_value)
# Compute loss as a weighted sum of the baseline loss, the policy
# gradient loss and an entropy regularization term.
pg_loss = compute_policy_gradient_loss(learner_outputs['policy_logits'],
batch['action'],
vtrace_returns.pg_advantages)
baseline_loss = flags.baseline_cost * compute_baseline_loss(
vtrace_returns.vs - learner_outputs['baseline'])
entropy_loss = flags.entropy_cost * compute_entropy_loss(
learner_outputs['policy_logits'])
aux_loss = learner_outputs['aux_loss'][0]
total_loss = pg_loss + baseline_loss + entropy_loss + aux_loss
episode_returns = batch['episode_return'][batch['done']]
episode_lens = batch['episode_step'][batch['done']]
won = batch['reward'][batch['done']] > 0.8
stats = {
'mean_win_rate': torch.mean(won.float()).item(),
'mean_episode_len': torch.mean(episode_lens.float()).item(),
'mean_episode_return': torch.mean(episode_returns).item(),
'total_loss': total_loss.item(),
'pg_loss': pg_loss.item(),
'baseline_loss': baseline_loss.item(),
'entropy_loss': entropy_loss.item(),
'aux_loss': aux_loss.item(),
}
optimizer.zero_grad()
model.zero_grad()
total_loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 40.0)
optimizer.step()
scheduler.step()
# Interestingly, this doesn't require moving off cuda first?
actor_model.load_state_dict(model.state_dict())
return stats
def create_buffers(observation_shapes, num_actions, flags) -> Buffers:
T = flags.unroll_length
specs = dict(
reward=dict(size=(T + 1,), dtype=torch.float32),
done=dict(size=(T + 1,), dtype=torch.bool),
episode_return=dict(size=(T + 1,), dtype=torch.float32),
episode_step=dict(size=(T + 1,), dtype=torch.int32),
last_action=dict(size=(T + 1,), dtype=torch.int64),
policy_logits=dict(size=(T + 1, num_actions), dtype=torch.float32),
baseline=dict(size=(T + 1,), dtype=torch.float32),
action=dict(size=(T + 1,), dtype=torch.int64),
aux_loss=dict(size=(T + 1, ), dtype=torch.float32),
)
for k, shape in observation_shapes.items():
specs[k] = dict(size=(T + 1, *shape), dtype=torch.long)
buffers: Buffers = {key: [] for key in specs}
for _ in range(flags.num_buffers):
for key in buffers:
buffers[key].append(torch.empty(**specs[key]).share_memory_())
return buffers
def train(flags): # pylint: disable=too-many-branches, too-many-statements
if flags.xpid is None:
flags.xpid = 'torchbeast-%s' % time.strftime('%Y%m%d-%H%M%S')
plogger = file_writer.FileWriter(
xpid=flags.xpid,
xp_args=flags.__dict__,
rootdir=flags.savedir,
symlink_latest=False,
)
checkpointpath = os.path.expandvars(
os.path.expanduser('%s/%s/%s' % (flags.savedir, flags.xpid,
'model.tar')))
T = flags.unroll_length
B = flags.batch_size
flags.device = None
if not flags.disable_cuda and torch.cuda.is_available():
logging.info('Using CUDA.')
flags.device = torch.device('cuda')
else:
logging.info('Not using CUDA.')
flags.device = torch.device('cpu')
env = Net.create_env(flags)
model = Net.make(flags, env)
buffers = create_buffers(env.observation_space, len(env.action_space), flags)
model.share_memory()
actor_processes = []
ctx = mp.get_context('fork')
free_queue = ctx.SimpleQueue()
full_queue = ctx.SimpleQueue()
for i in range(flags.num_actors):
actor = ctx.Process(
target=act,
args=(i, free_queue, full_queue, model, buffers, flags))
actor.start()
actor_processes.append(actor)
learner_model = Net.make(flags, env).to(device=flags.device)
optimizer = torch.optim.RMSprop(
learner_model.parameters(),
lr=flags.learning_rate,
momentum=flags.momentum,
eps=flags.epsilon,
alpha=flags.alpha)
def lr_lambda(epoch):
return 1 - min(epoch * T * B, flags.total_frames) / flags.total_frames
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
if flags.resume:
save = torch.load(flags.resume, map_location='cpu')
learner_model.load_state_dict(save['model_state_dict'])
optimizer.load_state_dict(save['optimizer_state_dict'])
if flags.resume_scheduler:
scheduler.load_state_dict(save['scheduler_state_dict'])
# tune only the embedding layer
if flags.resume_strategy == 'emb':
keep = []
for group in optimizer.param_groups:
if group['params'][0].size() == (len(learner_model.vocab), flags.demb):
keep.append(group)
optimizer.param_groups = keep
logger = logging.getLogger('logfile')
stat_keys = [
'total_loss',
'mean_episode_return',
'pg_loss',
'baseline_loss',
'entropy_loss',
'aux_loss',
'mean_win_rate',
'mean_episode_len',
]
logger.info('# Step\t%s', '\t'.join(stat_keys))
frames, stats = 0, {}
def batch_and_learn(i, lock=threading.Lock()):
"""Thread target for the learning process."""
nonlocal frames, stats
timings = prof.Timings()
while frames < flags.total_frames:
timings.reset()
batch = get_batch(free_queue, full_queue, buffers, flags, timings)
stats = learn(model, learner_model, batch, optimizer, scheduler,
flags)
timings.time('learn')
with lock:
to_log = dict(frames=frames)
to_log.update({k: stats[k] for k in stat_keys})
plogger.log(to_log)
frames += T * B
if i == 0:
logging.info('Batch and learn: %s', timings.summary())
for m in range(flags.num_buffers):
free_queue.put(m)
threads = []
for i in range(flags.num_threads):
thread = threading.Thread(
target=batch_and_learn, name='batch-and-learn-%d' % i, args=(i,))
thread.start()
threads.append(thread)
def checkpoint():
if flags.disable_checkpoint:
return
logging.info('Saving checkpoint to %s', checkpointpath)
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'flags': vars(flags),
}, checkpointpath)
timer = timeit.default_timer
try:
last_checkpoint_time = timer()
while frames < flags.total_frames:
start_frames = frames
start_time = timer()
time.sleep(5)
if timer() - last_checkpoint_time > 10 * 60: # Save every 10 min.
checkpoint()
last_checkpoint_time = timer()
fps = (frames - start_frames) / (timer() - start_time)
if stats.get('episode_returns', None):
mean_return = 'Return per episode: %.1f. ' % stats[
'mean_episode_return']
else:
mean_return = ''
total_loss = stats.get('total_loss', float('inf'))
logging.info('After %i frames: loss %f @ %.1f fps. %sStats:\n%s',
frames, total_loss, fps, mean_return,
pprint.pformat(stats))
except KeyboardInterrupt:
return # Try joining actors then quit.
else:
for thread in threads:
thread.join()
logging.info('Learning finished after %d frames.', frames)
finally:
for _ in range(flags.num_actors):
free_queue.put(None)
for actor in actor_processes:
actor.join(timeout=1)
checkpoint()
plogger.close()
def test(flags, num_eps: int = 1000):
from rtfm import featurizer as X
gym_env = Net.create_env(flags)
if flags.mode == 'test_render':
gym_env.featurizer = X.Concat([gym_env.featurizer, X.Terminal()])
env = environment.Environment(gym_env)
if not flags.random_agent:
model = Net.make(flags, gym_env)
model.eval()
if flags.xpid is None:
checkpointpath = './results_latest/model.tar'
else:
checkpointpath = os.path.expandvars(
os.path.expanduser('%s/%s/%s' % (flags.savedir, flags.xpid,
'model.tar')))
checkpoint = torch.load(checkpointpath, map_location='cpu')
model.load_state_dict(checkpoint['model_state_dict'])
observation = env.initial()
returns = []
won = []
entropy = []
ep_len = []
while len(won) < num_eps:
done = False
steps = 0
while not done:
if flags.random_agent:
action = torch.zeros(1, 1, dtype=torch.int32)
action[0][0] = random.randint(0, gym_env.action_space.n - 1)
observation = env.step(action)
else:
agent_outputs = model(observation)
observation = env.step(agent_outputs['action'])
policy = F.softmax(agent_outputs['policy_logits'], dim=-1)
log_policy = F.log_softmax(agent_outputs['policy_logits'], dim=-1)
e = -torch.sum(policy * log_policy, dim=-1)
entropy.append(e.mean(0).item())
steps += 1
done = observation['done'].item()
if observation['done'].item():
returns.append(observation['episode_return'].item())
won.append(observation['reward'][0][0].item() > 0.5)
ep_len.append(steps)
# logging.info('Episode ended after %d steps. Return: %.1f',
# observation['episode_step'].item(),
# observation['episode_return'].item())
if flags.mode == 'test_render':
sleep_seconds = os.environ.get('DELAY', '0.3')
time.sleep(float(sleep_seconds))
if observation['done'].item():
print('Done: {}'.format('You won!!' if won[-1] else 'You lost!!'))
print('Episode steps: {}'.format(observation['episode_step']))
print('Episode return: {}'.format(observation['episode_return']))
done_seconds = os.environ.get('DONE', None)
if done_seconds is None:
print('Press Enter to continue')
input()
else:
time.sleep(float(done_seconds))
env.close()
logging.info('Average returns over %i episodes: %.2f. Win rate: %.2f. Entropy: %.2f. Len: %.2f', num_eps, sum(returns)/len(returns), sum(won)/len(returns), sum(entropy)/max(1, len(entropy)), sum(ep_len)/len(ep_len))
def main(flags):
flags.num_buffers = 2 * flags.num_actors
global Net
Net = importlib.import_module('model.{}'.format(flags.model)).Model
if flags.mode == 'train':
train(flags)
else:
test(flags)
if __name__ == '__main__':
parser = exp_utils.get_parser()
flags = parser.parse_args()
flags.xpid = flags.xpid or exp_utils.compose_name(flags.model, flags.wiki, flags.env, flags.prefix)
main(flags)