-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathtest_gaussians_pcl.py
404 lines (375 loc) · 14.2 KB
/
test_gaussians_pcl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import dataclasses
import math
import os
import random
import unittest
import matplotlib.pyplot as plt
import numpy as np
import torch
import torchvision
from testing_utils import fig_to_np_array, VISUALIZATION_DIR
from tqdm import tqdm
from uco3d.data_utils import get_all_load_dataset, load_whole_sequence
from uco3d.dataset_utils.gauss3d_rendering import render_splats
from uco3d.dataset_utils.gauss3d_utils import save_gsplat_ply
class TestGaussiansPCL(unittest.TestCase):
def setUp(self):
random.seed(42)
def test_alignment(self):
"""
Check that the point cloud reprojection is the same
when aligned and not aligned.
"""
dataset_aligned = get_all_load_dataset(
frame_data_builder_kwargs=dict(
apply_alignment=True,
use_cache=False,
)
)
dataset_aligned_cached = get_all_load_dataset(
frame_data_builder_kwargs=dict(
apply_alignment=True,
use_cache=True,
)
)
dataset_not_aligned = get_all_load_dataset(
frame_data_builder_kwargs=dict(
apply_alignment=False,
use_cache=False,
)
)
load_idx = [random.randint(0, len(dataset_aligned)) for _ in range(10)]
for i in load_idx:
frame_data_aligned = dataset_aligned[i]
frame_data_not_aligned = dataset_not_aligned[i]
frame_data_aligned_cached = dataset_aligned_cached[i]
for pcl_type in [
"sequence_point_cloud",
"sequence_segmented_point_cloud",
"sequence_sparse_point_cloud",
]:
def _get_pcl_proj_rays(frame_data):
xyz = getattr(frame_data, pcl_type).xyz
camera = frame_data.camera
xyz_cam = camera.transform_points_to_camera_coords(xyz[None])[0]
rays = torch.nn.functional.normalize(xyz_cam, dim=-1)
return rays
rays_aligned = _get_pcl_proj_rays(frame_data_aligned)
rays_aligned_cached = _get_pcl_proj_rays(frame_data_aligned_cached)
rays_not_aligned = _get_pcl_proj_rays(frame_data_not_aligned)
assert torch.allclose(rays_aligned, rays_not_aligned, atol=1e-4)
assert torch.allclose(rays_not_aligned, rays_aligned_cached, atol=1e-4)
def test_visualize_gaussian_alignment(self):
"""
Compare the rendering of the gaussian splats
when aligned and not aligned.
"""
try:
import gsplat # noqa
except ImportError:
print(
"Skipping test_visualize_gaussian_render"
" because gsplat is not installed."
)
return
dataset_aligned, dataset_not_aligned = [
get_all_load_dataset(
frame_data_builder_kwargs=dict(
apply_alignment=apply_alignment,
load_depths=False,
load_masks=False,
load_gaussian_splats=True,
gaussian_splats_truncate_background=False,
gaussian_splats_load_higher_order_harms=True,
load_sparse_point_clouds=False,
load_point_clouds=False,
load_segmented_point_clouds=False,
box_crop=True,
box_crop_context=0.4,
)
)
for apply_alignment in [True, False]
]
seq_names = list(dataset_not_aligned.sequence_names())[:3]
for seq_name in seq_names:
self._test_visualize_gaussian_alignment_one(
dataset_aligned,
dataset_not_aligned,
seq_name,
)
def _test_visualize_gaussian_alignment_one(
self,
dataset_aligned,
dataset_not_aligned,
seq_name: str,
max_frames_render: int = 6,
):
render_colors = []
for dataset in [dataset_aligned, dataset_not_aligned]:
frame_data = load_whole_sequence(
dataset,
seq_name,
max_frames_render,
)
# rendering the sequence
# print(
# "test_visualize_gaussian_rotation:"
# + f" Rendering gaussians for sequence {seq_name}."
# )
cameras = frame_data.camera
gaussian_splats = frame_data.sequence_gaussian_splats[0]
assert gaussian_splats is not None
render_colors_now, _, _ = render_splats(
cameras=cameras,
splats=gaussian_splats,
render_size=(512, 512),
near_plane=0.01,
)
render_colors.append(render_colors_now.cpu())
frame = torch.cat(render_colors, dim=1)
frame = frame.clamp(0, 1).permute(0, 3, 1, 2)
outdir = VISUALIZATION_DIR
os.makedirs(outdir, exist_ok=True)
outfile = os.path.join(outdir, f"aligned_vs_not_aligned_{seq_name}.png")
print(f"test_visualize_gaussian_rotation: Writing {outfile}.")
torchvision.utils.save_image(frame, outfile)
def test_visualize_gaussian_render(self):
"""
Visualise the rendering of the gaussian splats.
"""
try:
import gsplat # noqa
except ImportError:
print(
"Skipping test_visualize_gaussian_render"
" because gsplat is not installed."
)
return
dataset = get_all_load_dataset(
frame_data_builder_kwargs=dict(
apply_alignment=True,
load_depths=False,
load_masks=False,
load_gaussian_splats=True,
gaussian_splats_truncate_background=False,
load_sparse_point_clouds=False,
load_point_clouds=False,
load_segmented_point_clouds=False,
box_crop=True,
box_crop_context=0.5,
)
)
seq_names = list(dataset.sequence_names())[:3]
for seq_name in seq_names:
self._test_visualize_gaussian_render_one(dataset, seq_name)
def _test_visualize_gaussian_render_one(
self,
dataset,
seq_name: str,
max_frames_render: int = 16,
):
frame_data = load_whole_sequence(
dataset,
seq_name,
max_frames_render,
)
# rendering the sequence
# print(
# "test_visualize_gaussian_render:"
# + f" Rendering gaussians for sequence {seq_name}."
# )
cameras = frame_data.camera
gaussian_splats = frame_data.sequence_gaussian_splats[0]
assert gaussian_splats is not None
im = frame_data.image_rgb.permute(0, 2, 3, 1)
render_colors, render_alphas, info = render_splats(
cameras=cameras,
splats=gaussian_splats,
render_size=(im.shape[1], im.shape[2]),
near_plane=0.01,
)
frames = torch.cat(
[
render_colors.cpu(),
im.cpu(),
(render_colors.cpu() - im.cpu()).abs().cpu(),
],
dim=2,
).clamp(0, 1)
if True: # save images
frame = frames.permute(0, 3, 1, 2)
outdir = VISUALIZATION_DIR
os.makedirs(outdir, exist_ok=True)
outfile = os.path.join(outdir, f"gauss_renders_{seq_name}.png")
print(f"test_visualize_gaussian_render: Writing {outfile}.")
torchvision.utils.save_image(
frame,
outfile,
nrow=int(round(math.sqrt(frame.shape[0] / 3))),
)
else: # save video
frames = (frames * 255).round().to(torch.uint8)
outdir = VISUALIZATION_DIR
os.makedirs(outdir, exist_ok=True)
outfile = os.path.join(outdir, f"gauss_renders_{seq_name}.mp4")
print(f"test_visualize_gaussian_render: Writing {outfile}.")
torchvision.io.write_video(
outfile,
frames,
fps=20,
video_codec="h264",
options={"-crf": "18", "-b": "2000k", "-pix_fmt": "yuv420p"},
)
def test_visualize_pcl_reprojection(
self,
output_videos: bool = False,
):
"""
Visualise the reprojection of the point clouds on the image.
"""
dataset = get_all_load_dataset(
frame_data_builder_kwargs=dict(
apply_alignment=True,
load_gaussian_splats=False,
box_crop=True,
box_crop_context=0.3,
),
)
seq_names = list(dataset.sequence_names())[:3]
for seq_name in seq_names:
self._test_visualize_pcl_reprojection_one(
dataset,
seq_name,
max_frames_plot=100 if output_videos else 12,
output_video=output_videos,
)
def _test_visualize_pcl_reprojection_one(
self,
dataset,
seq_name: str,
max_pts_plot: int = 100,
max_frames_plot: int = 12,
output_video: bool = False,
):
seq_idx = dataset.sequence_indices_in_order(seq_name)
seq_idx = list(seq_idx)
if max_frames_plot > 0 and len(seq_idx) > max_frames_plot:
sel = (
torch.linspace(
0,
len(seq_idx) - 1,
max_frames_plot,
)
.round()
.long()
)
seq_idx = [seq_idx[i] for i in sel]
frames = []
pcl_sel = {}
pcl_rgb_sel = {}
fig, ax = plt.subplots(1, 3, figsize=(12, 4))
for frame_idx, dataset_idx in enumerate(tqdm(seq_idx)):
# get frame_data and camera
frame_data = dataset[dataset_idx]
camera = frame_data.camera
# create the plot
for pcli, pcl_type in enumerate(
[
"sequence_point_cloud",
"sequence_segmented_point_cloud",
"sequence_sparse_point_cloud",
]
):
ax_now = ax[pcli]
ax_now.clear()
# obtain the point cloud
pcl = getattr(frame_data, pcl_type)
if frame_idx == 0:
xyz_now = pcl.xyz
if xyz_now.shape[0] > max_pts_plot:
xyz_now = xyz_now[
torch.randperm(xyz_now.shape[0])[:max_pts_plot]
]
pcl_rgb_sel[pcl_type] = np.random.rand(len(xyz_now), 3)
pcl_sel[pcl_type] = xyz_now
xyz = pcl_sel[pcl_type]
y = camera.transform_points_screen(xyz[None])[0]
im = frame_data.image_rgb.permute(1, 2, 0).clamp(0, 1).numpy()
ax_now.imshow(im)
ax_now.scatter(
y[:, 0].numpy(),
y[:, 1].numpy(),
c=pcl_rgb_sel[pcl_type],
s=20.0,
marker="x",
)
ax_now.set_xlim(0, im.shape[1])
ax_now.set_ylim(im.shape[0], 0)
ax_now.set_xticks([])
ax_now.set_yticks([])
ax_now.set_title(pcl_type)
plt.tight_layout()
frame = torch.from_numpy(fig_to_np_array(fig))[..., :3]
frames.append(frame)
plt.close(fig)
frames = torch.stack(frames)
outdir = VISUALIZATION_DIR
os.makedirs(outdir, exist_ok=True)
if not output_video: # save images
outfile = os.path.join(outdir, f"pcl_reprojections_{seq_name}.png")
print(f"test_visualize_pcl_reprojection: Writing {outfile}.")
torchvision.utils.save_image(
frames.float().permute(0, 3, 1, 2) / 255,
outfile,
nrow=int(round(math.sqrt(frames.shape[0] / 3))),
)
else: # save video
outfile = os.path.join(outdir, f"pcl_reprojections_{seq_name}.mp4")
print(f"test_visualize_pcl_reprojection: Writing {outfile}.")
torchvision.io.write_video(
outfile,
frames,
fps=20,
)
def test_store_gaussians(self):
outdir = VISUALIZATION_DIR
os.makedirs(outdir, exist_ok=True)
dataset = get_all_load_dataset(
frame_data_builder_kwargs=dict(
apply_alignment=True,
load_gaussian_splats=True,
gaussian_splats_truncate_background=False,
)
)
forked_random = random.Random(42)
load_idx = [forked_random.randint(0, len(dataset)) for _ in range(3)]
for i in load_idx:
entry = dataset[i]
outfile = os.path.join(
outdir,
f"test_store_gaussians_{entry.sequence_name}.ply",
)
# truncate points outside a given spherical boundary:
if entry.sequence_gaussian_splats.fg_mask is None:
fg_mask = torch.ones(
entry.sequence_gaussian_splats.means.shape[0], dtype=bool
)
else:
fg_mask = entry.sequence_gaussian_splats.fg_mask
centroid = entry.sequence_gaussian_splats.means[fg_mask].mean(
dim=0, keepdim=True
)
ok = (entry.sequence_gaussian_splats.means - centroid).norm(dim=1) < 4.5
dct = dataclasses.asdict(entry.sequence_gaussian_splats)
splats_truncated = type(entry.sequence_gaussian_splats)(
**{k: v[ok] for k, v in dct.items() if v is not None}
)
# store splats
save_gsplat_ply(splats_truncated, outfile)
if __name__ == "__main__":
unittest.main()