-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathgenerator_recsys.py
executable file
·132 lines (86 loc) · 6.04 KB
/
generator_recsys.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import tensorflow as tf
import ops
class NextItNet_Decoder:
def __init__(self, model_para):
self.model_para = model_para
embedding_width = model_para['dilated_channels']
self.allitem_embeddings = tf.get_variable('allitem_embeddings',
[model_para['item_size'], embedding_width],
initializer=tf.truncated_normal_initializer(stddev=0.02))
def train_graph(self, is_negsample=False):
self.itemseq_input = tf.placeholder('int32',
[None, None], name='itemseq_input')
label_seq, dilate_input=self.model_graph(self.itemseq_input, train=True)
model_para = self.model_para
if is_negsample:
logits_2D = tf.reshape(dilate_input, [-1,model_para['dilated_channels']])
self.softmax_w = tf.get_variable("softmax_w", [model_para['item_size'], model_para['dilated_channels']],tf.float32,tf.random_normal_initializer(0.0, 0.01))
self.softmax_b = tf.get_variable("softmax_b", [model_para['item_size']], tf.float32, tf.constant_initializer(0.1))
label_flat = tf.reshape(label_seq, [-1, 1]) # 1 is the number of positive example
num_sampled = int(0.2* model_para['item_size'])#sample 20% as negatives
# tf.nn.nce_loss
loss =tf.nn.sampled_softmax_loss(self.softmax_w, self.softmax_b, label_flat, logits_2D, num_sampled,model_para['item_size'])
else:
logits = ops.conv1d(tf.nn.relu(dilate_input), model_para['item_size'], name='logits')
logits_2D = tf.reshape(logits, [-1, model_para['item_size']])
label_flat = tf.reshape(label_seq, [-1])
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=label_flat, logits=logits_2D)
self.loss = tf.reduce_mean(loss)
#regularization = 0.001 * tf.reduce_mean([tf.nn.l2_loss(v) for v in tf.trainable_variables()])
#self.loss = self.loss + regularization
self.arg_max_prediction = tf.argmax(logits_2D, 1) #useless, if using negative sampling (i.e., negsample=True), it should be changed such as in predict_graph module
def model_graph(self, itemseq_input, train=True):
model_para = self.model_para
context_seq = itemseq_input[:, 0:-1]
label_seq = itemseq_input[:, 1:]
context_embedding = tf.nn.embedding_lookup(self.allitem_embeddings,
context_seq, name="context_embedding")
dilate_input = context_embedding
for layer_id, dilation in enumerate(model_para['dilations']):
dilate_input = ops.nextitnet_residual_block(dilate_input, dilation,
layer_id, model_para['dilated_channels'],
model_para['kernel_size'], causal=True, train=train)
return label_seq, dilate_input
def predict_graph(self, is_negsample=False,reuse=False):
if reuse:
tf.get_variable_scope().reuse_variables()
self.input_predict = tf.placeholder('int32', [None, None], name='input_predict')
label_seq, dilate_input = self.model_graph(self.input_predict, train=False)
model_para = self.model_para
if is_negsample:
logits_2D = tf.reshape(dilate_input[:,-1:,:], [-1, model_para['dilated_channels']])
logits_2D = tf.matmul(logits_2D, tf.transpose(self.softmax_w))
logits_2D = tf.nn.bias_add(logits_2D, self.softmax_b)
else:
logits = ops.conv1d(tf.nn.relu(dilate_input[:,-1:,:]), model_para['item_size'], name='logits')
logits_2D = tf.reshape(logits, [-1, model_para['item_size']])
label_flat = tf.reshape(label_seq[:,-1], [-1])
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=label_flat, logits=logits_2D)
self.loss_test = tf.reduce_mean(loss)
probs_flat = tf.nn.softmax(logits_2D)
# self.g_probs = tf.reshape(probs_flat, [-1, tf.shape(self.input_predict)[1], model_para['item_size']])
self.g_probs = tf.reshape(probs_flat, [-1, 1, model_para['item_size']])
self.top_k = tf.nn.top_k(self.g_probs[:, -1], k=5, name='top-k')# much faster, if you change [probs] = sess.run([itemrec.g_probs],..)to [top_k] = sess.run([itemrec.top_k],..) in NextitNet_TF_Pretrain.py
# output top-n based on recalled items instead of all items. You can use this interface for practical recommender systems.
def predict_graph_onrecall(self, is_negsample=False, reuse=False):
if reuse:
tf.get_variable_scope().reuse_variables()
self.input_predict = tf.placeholder('int32', [None, None], name='input_predict')
self.input_recall = tf.placeholder('int32', [None, None], name='input_recall')# candidate items
label_seq, dilate_input = self.model_graph(self.input_predict, train=False)
model_para = self.model_para
if is_negsample:
logits_2D=dilate_input[:, -1:, :]
recall_mat = tf.nn.embedding_lookup(self.softmax_w, self.input_recall)
logits_2D = tf.matmul(logits_2D, tf.transpose(recall_mat,[0,2,1]))
logits_2D=tf.reshape(logits_2D, [-1, tf.shape(self.input_recall)[1]])
recall_bias = tf.nn.embedding_lookup(self.softmax_b, self.input_recall)
logits_2D=tf.add(logits_2D,recall_bias)
else:
# logits = ops.conv1d(tf.nn.relu(dilate_input), model_para['item_size'], name='logits')
logits = ops.conv1d(tf.nn.relu(dilate_input[:, -1:, :]), model_para['item_size'], name='logits')
logits_2D = tf.reshape(logits, [-1, model_para['item_size']])
probs_flat = tf.nn.softmax(logits_2D, name='softmax')
self.g_probs = probs_flat
# newly added for weishi, since each input is one user (i.e., a batch), in fact we just need to rank the first batch, the below code is to select top-5
# self.top_k= tf.nn.top_k(self.g_probs[:,-1], k=model_para['top_k'],name='top-k')