-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathnextitrec_recall.py
266 lines (218 loc) · 11.9 KB
/
nextitrec_recall.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#!/usr/bin/python
# -*- coding: utf-8 -*-
import tensorflow as tf
import data_loader_recsys
import generator_recsys
import utils
import shutil
import time
import math
import eval
import numpy as np
import argparse
import shutil
import os.path
from tensorflow.python.framework import graph_util
# You can run it directly, first training and then evaluating
# nextitrec_generate.py can only be run when the model parameters are saved, i.e.,
# save_path = saver.save(sess,
# "Data/Models/generation_model/model_nextitnet.ckpt".format(iter, numIters))
# In the prediction phrase, only consider the last index to reduce the time compplexity
#Strongly suggest running codes on GPU with more than 10G memory!!!
#if your session data is very long e.g, >50, and you find it may not have very strong internal sequence properties, you can consider generate subsequences
# based on the recalled items
def generatesubsequence(train_set):
# create subsession only for training
subseqtrain = []
for i in range(len(train_set)):
# print x_train[i]
seq = train_set[i]
lenseq = len(seq)
# session lens=100 shortest subsession=5 realvalue+95 0
for j in range(lenseq - 2):
subseqend = seq[:len(seq) - j]
subseqbeg = [0] * j
subseq = np.append(subseqbeg, subseqend)
# beginseq=padzero+subseq
# newsubseq=pad+subseq
subseqtrain.append(subseq)
x_train = np.array(subseqtrain) # list to ndarray
del subseqtrain
# Randomly shuffle data
np.random.seed(10)
shuffle_train = np.random.permutation(np.arange(len(x_train)))
x_train = x_train[shuffle_train]
print "generating subsessions is done!"
return x_train
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--top_k', type=int, default=5,
help='Sample from top k predictions, used for generating')
parser.add_argument('--beta1', type=float, default=0.9,
help='hyperpara-Adam')
#history_sequences_20181014_fajie_smalltest.csv /data/weishi_ai_ceph/fajieyuan/nextitnet-master-2/Data/Session/history_sequences_20181014_fajie.csv
# /data/weishi_ai_ceph/fajieyuan/nextitnet-master-2/Data/Session/history_sequences_20181014_fajie.index
# /data/weishi_ai_ceph/fajieyuan/nextitnet-master-2/Data/Models/generation_model/model_nextitnet.pb
parser.add_argument('--datapath', type=str, default='Data/Session/user-filter-20000items-session5.csv',
help='data path')
parser.add_argument('--datapath_index', type=str, default='Data/Session/',
help='data path')
parser.add_argument('--eval_iter', type=int, default=2000,
help='Sample generator output evry x steps')
parser.add_argument('--save_para_every', type=int, default=2000,
help='save model parameters every')
parser.add_argument('--tt_percentage', type=float, default=0.5,
help='0.2 means 80% training 20% testing')
parser.add_argument('--is_generatesubsession', type=bool, default=False,
help='whether generating a subsessions, e.g., 12345-->01234,00123,00012 It may be useful for very some very long sequences')
args = parser.parse_args()
dl = data_loader_recsys.Data_Loader({'model_type': 'generator', 'dir_name': args.datapath, 'dir_name_index': args.datapath_index})
all_samples = dl.item
items = dl.item_dict
all_items=items.values()
print "len(items)",len(items)
# print all_items
# Randomly shuffle data
np.random.seed(10)
shuffle_indices = np.random.permutation(np.arange(len(all_samples)))
all_samples = all_samples[shuffle_indices]
# Split train/test set
dev_sample_index = -1 * int(args.tt_percentage * float(len(all_samples)))
train_set, valid_set = all_samples[:dev_sample_index], all_samples[dev_sample_index:]
if args.is_generatesubsession:
train_set = generatesubsequence(train_set)
model_para = {
#if you changed the parameters here, also do not forget to change paramters in nextitrec_generate.py
'item_size': len(items),
'dilated_channels': 100,#200 is usually better
# if you use nextitnet_residual_block, you can use [1, 4, ],
# if you use nextitnet_residual_block_one, you can tune and i suggest [1, 2, 4, ], for a trial
# when you change it do not forget to change it in nextitrec_generate.py
# if you find removing residual network, the performance does not obviously decrease, then I think your data does not have strong seqeunce. Change a dataset and try again.
'dilations': [1,2,4,1,2,4,],
'kernel_size': 3,
'learning_rate':0.001,
'batch_size':128,#128 is usually better
'iterations':100,
'top_k': args.top_k,
'is_negsample':True #False denotes no negative sampling. You have to use True if you want to do it based on recalled items
}
itemrec = generator_recsys.NextItNet_Decoder(model_para)
itemrec.train_graph(model_para['is_negsample'])
optimizer = tf.train.AdamOptimizer(model_para['learning_rate'], beta1=args.beta1).minimize(itemrec.loss)
itemrec.predict_graph_onrecall(model_para['is_negsample'],reuse=True)
sess= tf.Session()
init=tf.global_variables_initializer()
sess.run(init)
saver = tf.train.Saver()
numIters = 1
for iter in range(model_para['iterations']):
batch_no = 0
batch_size = model_para['batch_size']
while (batch_no + 1) * batch_size < train_set.shape[0]:
start = time.clock()
item_batch = train_set[batch_no * batch_size: (batch_no + 1) * batch_size, :]
_, loss, results = sess.run(
[optimizer, itemrec.loss,
itemrec.arg_max_prediction],
feed_dict={
itemrec.itemseq_input: item_batch
})
end = time.clock()
if numIters % args.eval_iter == 0:
print "-------------------------------------------------------train1"
print "LOSS: {}\tITER: {}\tBATCH_NO: {}\t STEP:{}\t total_batches:{}".format(
loss, iter, batch_no, numIters, train_set.shape[0] / batch_size)
print "TIME FOR BATCH", end - start
print "TIME FOR ITER (mins)", (end - start) * (train_set.shape[0] / batch_size) / 60.0
# if numIters % args.eval_iter == 0:
# print "-------------------------------------------------------test1"
# if (batch_no + 1) * batch_size < valid_set.shape[0]:
# item_batch = valid_set[(batch_no) * batch_size: (batch_no + 1) * batch_size, :]
# loss = sess.run(
# [itemrec.loss_test],
# feed_dict={
# itemrec.input_predict: item_batch
# })
# print "LOSS: {}\tITER: {}\tBATCH_NO: {}\t STEP:{}\t total_batches:{}".format(
# loss, iter, batch_no, numIters, valid_set.shape[0] / batch_size)
batch_no += 1
if numIters % args.eval_iter == 0:
batch_no_test = 0
batch_size_test = batch_size*1
curr_preds_5=[]
rec_preds_5=[] #1
ndcg_preds_5=[] #1
curr_preds_20 = []
rec_preds_20 = [] # 1
ndcg_preds_20 = [] # 1
while (batch_no_test + 1) * batch_size_test < valid_set.shape[0]:
if (numIters / (args.eval_iter) < 10):
if (batch_no_test > 20):
break
else:
if (batch_no_test > 500):
break
item_batch = valid_set[batch_no_test * batch_size_test: (batch_no_test + 1) * batch_size_test, :]
allitem_list=[]
# allitem_batch=[allitem_list[all_items] for i in xrange(batch_size_test)]
for i in range(batch_size_test):
allitem_list.append(all_items)
[top_k] = sess.run(
[itemrec.top_k],
feed_dict={
itemrec.input_predict: item_batch,
itemrec.input_recall: allitem_list#replace it with your recalled items
})
batch_top_n=[]
for bi in range(len(allitem_list)):
recall_batch_num=allitem_list[bi]
top_n = [recall_batch_num[x] for x in top_k[1][bi]]
batch_top_n.append(top_n)
for bi in range(top_k[1].shape[0]):
top_n=batch_top_n[bi]
true_item = item_batch[bi][-1]
top_n={ch: i for i, ch in enumerate(top_n)}
rank_n = top_n.get(true_item)
if rank_n == None:
curr_preds_5.append(0.0)
rec_preds_5.append(0.0) # 2
ndcg_preds_5.append(0.0) # 2
else:
MRR_5 = 1.0 / (rank_n + 1)
Rec_5 = 1.0 # 3
ndcg_5 = 1.0 / math.log(rank_n + 2, 2) # 3
curr_preds_5.append(MRR_5)
rec_preds_5.append(Rec_5) # 4
ndcg_preds_5.append(ndcg_5)
batch_no_test += 1
print "BATCH_NO: {}".format(batch_no_test)
print "Accuracy mrr_5:",sum(curr_preds_5) / float(len(curr_preds_5))#5
# print "Accuracy mrr_20:", sum(curr_preds_20) / float(len(curr_preds_20)) # 5
print "Accuracy hit_5:", sum(rec_preds_5) / float(len(rec_preds_5))#5
# print "Accuracy hit_20:", sum(rec_preds_20) / float(len(rec_preds_20)) # 5
print "Accuracy ndcg_5:", sum(ndcg_preds_5) / float(len(ndcg_preds_5)) # 5
# print "Accuracy ndcg_20:", sum(ndcg_preds_20) / float(len(ndcg_preds_20)) #
#print "curr_preds",curr_preds
# print "---------------------------Test Accuray----------------------------"
numIters += 1
if numIters % args.save_para_every == 0:
save_path = saver.save(sess,
"Data/Models/generation_model/model_nextitrec_20190302_lastindex.ckpt".format(
iter, numIters))
# save_path = saver.save(sess,
# "/data/weishi_ai_ceph/fajieyuan/nextitnet-master-2/Data/Models/generation_model/model_nextitnet.ckpt".format(iter, numIters))
# print("%d ops in the final graph." % len(tf.get_default_graph().as_graph_def().node)) # 得到当前图有几个操作节点
# for op in tf.get_default_graph().get_operations(): # 打印模型节点信息
# print (op.name, op.values())
graph_def = tf.get_default_graph().as_graph_def() # 得到当前的图的 GraphDef 部分,通过这个部分就可以完成重输入层到输出层的计算过程
output_graph_def = graph_util.convert_variables_to_constants( # 模型持久化,将变量值固定
sess,
graph_def,
["input_predict","top-k"] # 需要保存节点的名字
)
with tf.gfile.GFile("Data/Models/generation_model/model_nextitrec_20190302_lastindex.pb", "wb") as f: # 保存模型
f.write(output_graph_def.SerializeToString()) # 序列化输出
print("%d ops in the final graph." % len(output_graph_def.node))
if __name__ == '__main__':
main()