-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathops.py
executable file
·128 lines (100 loc) · 5.47 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import tensorflow as tf
import math
#config e.g. dilations: [1,4,16,] In most cases[1,4,] is enough
def nextitnet_residual_block(input_, dilation, layer_id,
residual_channels, kernel_size,
causal=True, train=True):
resblock_type = "decoder"
resblock_name = "nextitnet_residual_block{}_layer_{}_{}".format(resblock_type, layer_id, dilation)
with tf.variable_scope(resblock_name):
dilated_conv = conv1d(input_, residual_channels,
dilation, kernel_size,
causal=causal,
name="dilated_conv1"
)
input_ln = layer_norm(dilated_conv, name="layer_norm1", trainable=train)
#input_ln=tf.contrib.layers.layer_norm(dilated_conv,reuse=not train, trainable=train) #performance is not good, paramter wrong?
relu1 = tf.nn.relu(input_ln)
dilated_conv = conv1d(relu1, residual_channels,
2 *dilation, kernel_size,
causal=causal,
name="dilated_conv2"
)
input_ln = layer_norm(dilated_conv, name="layer_norm2", trainable=train)
#input_ln = tf.contrib.layers.layer_norm(dilated_conv, reuse=not train, trainable=train)
relu1 = tf.nn.relu(input_ln)
return input_ + relu1
#suggest using this one if your data has strong sequence, dilations: [1,2,4,1,2,4,]
#Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity mappings in deep residual networks.
def nextitnet_residual_block_one(input_, dilation, layer_id,
residual_channels, kernel_size,
causal = True, train = True):
resblock_type = "decoder"
resblock_name = "nextitnet_residual_block_one_{}_layer_{}_{}".format(resblock_type, layer_id, dilation)
with tf.variable_scope(resblock_name):
input_ln = layer_norm(input_, name="layer_norm1", trainable = train)
relu1 = tf.nn.relu(input_ln)
conv1 = conv1d(relu1, int(0.5*residual_channels), name = "conv1d_1")
conv1 = layer_norm(conv1, name="layer_norm2", trainable = train)
relu2 = tf.nn.relu(conv1)
dilated_conv = conv1d(relu2, int(0.5*residual_channels),
dilation, kernel_size,
causal = causal,
name = "dilated_conv"
)
dilated_conv = layer_norm(dilated_conv, name="layer_norm3", trainable = train)
relu3 = tf.nn.relu(dilated_conv)
conv2 = conv1d(relu3, residual_channels, name = 'conv1d_2')
return input_ + conv2
#seems not good
#Conditional Image Generation with PixelCNN Decoders, wrong implementation?? let me know if you find the problem
def nextitnet_residual_block_gatedCNN(input_, dilation, layer_id,
residual_channels, kernel_size,
causal=True, train=True):
resblock_type = "decoder"
resblock_name = "gatedCNN_{}_layer_{}_{}".format(resblock_type, layer_id, dilation)
with tf.variable_scope(resblock_name):
dilated_conv = conv1d(input_, residual_channels,
dilation, kernel_size,
causal=causal,
name="dilated_conv"
)
tanh=tf.nn.tanh(dilated_conv)
gate_conv = conv1d(input_, residual_channels,
dilation, kernel_size,
causal=causal,
name="gate_conv"
)
sigm = tf.nn.sigmoid(gate_conv)
multi=tf.multiply(tanh,sigm)
multi=conv1d(multi, residual_channels, name="conv1d_1")
return input_ + multi
def conv1d(input_, output_channels,
dilation=1, kernel_size=1, causal=False,
name="dilated_conv"):
with tf.variable_scope(name):
weight = tf.get_variable('weight', [1, kernel_size, input_.get_shape()[-1], output_channels],
initializer=tf.truncated_normal_initializer(stddev=0.02, seed=1))
bias = tf.get_variable('bias', [output_channels],
initializer=tf.constant_initializer(0.0))
if causal:
padding = [[0, 0], [(kernel_size - 1) * dilation, 0], [0, 0]]
padded = tf.pad(input_, padding)
input_expanded = tf.expand_dims(padded, dim=1)
out = tf.nn.atrous_conv2d(input_expanded, weight, rate=dilation, padding='VALID') + bias
else:
input_expanded = tf.expand_dims(input_, dim=1)
# out = tf.nn.atrous_conv2d(input_expanded, w, rate = dilation, padding = 'SAME') + bias
out = tf.nn.conv2d(input_expanded, weight, strides=[1, 1, 1, 1], padding="SAME") + bias
return tf.squeeze(out, [1])
# tf.contrib.layers.layer_norm
def layer_norm(x, name, epsilon=1e-8, trainable=True):
with tf.variable_scope(name):
shape = x.get_shape()
beta = tf.get_variable('beta', [int(shape[-1])],
initializer=tf.constant_initializer(0), trainable=trainable)
gamma = tf.get_variable('gamma', [int(shape[-1])],
initializer=tf.constant_initializer(1), trainable=trainable)
mean, variance = tf.nn.moments(x, axes=[len(shape) - 1], keep_dims=True)
x = (x - mean) / tf.sqrt(variance + epsilon)
return gamma * x + beta