-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtext_cnn_hv.py
executable file
·152 lines (119 loc) · 6.31 KB
/
text_cnn_hv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import tensorflow as tf
import numpy as np
'''
including verical and horizonal cnn
'''
class TextCNN_hv(object):
"""
A CNN for text classification.
Uses an embedding layer, followed by a convolutional, max-pooling and softmax layer.
"https://github.com/dennybritz/cnn-text-classification-tf"
"""
def __init__(
self, sequence_length, num_classes, vocab_size,
embedding_size, filter_sizes, num_filters, loss_type, l2_reg_lambda):
# Placeholders for input, output and dropout
self.wholesession = tf.placeholder('int32',
[None, None], name='wholesession')
# a=self.t_sentence.get_shape()[1]*2
source_sess = self.wholesession[:, 0:-1]
target_sess = self.wholesession[:, -1:]
new_sequence_length=sequence_length-1
# source_embedding = tf.nn.embedding_lookup(self.wholesession,
# source_sess, name="source_embedding")
# target_embedding=tf.nn.embedding_lookup(self.wholesession,
# target_sess, name="target_sess")
# self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x")
# self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y")
self.input_x=source_sess
self.input_y=target_sess
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
self.loss_type = loss_type
self.l2_reg_lambda = l2_reg_lambda
# Keeping track of l2 regularization loss (optional)
l2_loss = tf.constant(0.0)
# Embedding layer
with tf.device('/cpu:0'), tf.name_scope("embedding"):
self.W = tf.Variable(
tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
name="W")
self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x)
self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
# Create a convolution + maxpool layer for each filter size
pooled_outputs = []
for i, filter_size in enumerate(filter_sizes):
with tf.name_scope("conv-maxpool-%s" % filter_size):
# Convolution Layer
filter_shape = [filter_size, embedding_size, 1, num_filters]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b")
# http://www.infoq.com/cn/articles/introduction-of-tensorflow-part4 how to use cnn
# new shape after conv2d[?, new_sequence_length - filter_size + 1, 1, 1]
conv = tf.nn.conv2d(
self.embedded_chars_expanded,
W,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
# Apply nonlinearity
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
# Maxpooling over the outputs
# new shape after max_pool[?, 1, 1, num_filters]
# be carefyul, the new_sequence_length has changed because of wholesession[:, 0:-1]
pooled = tf.nn.max_pool(
h,
ksize=[1, new_sequence_length - filter_size + 1, 1, 1],
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
pooled_outputs.append(pooled)
# Combine all the pooled features
num_filters_total = num_filters * len(filter_sizes)
self.h_pool = tf.concat(pooled_outputs, 3)
self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total]) #shape=[batch_size, 384]
# design the veritcal cnn
with tf.name_scope("conv-verical" ):
filter_shape = [new_sequence_length, 1, 1, 1]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[1]), name="b")
conv = tf.nn.conv2d(
self.embedded_chars_expanded,
W,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
self.vcnn_flat= tf.reshape(h, [-1, embedding_size])
self.final=tf.concat([self.h_pool_flat,self.vcnn_flat],1) #shape=[batch_size, 384+100]
# Add dropout
with tf.name_scope("dropout"):
self.h_drop = tf.nn.dropout(self.final, self.dropout_keep_prob)
# Final (unnormalized) scores and predictions
with tf.name_scope("output"):
W = tf.get_variable(
"W",
shape=[num_filters_total+embedding_size, num_classes],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b")
l2_loss += tf.nn.l2_loss(W)
l2_loss += tf.nn.l2_loss(b)
self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")
# self.predictions = tf.argmax(self.scores, 1, name="predictions")
# losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.scores, labels=self.input_y)
self.input_y = tf.reshape(self.input_y, [-1])
self.loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.scores)
self.loss = tf.reduce_mean(self.loss + l2_reg_lambda * l2_loss)
self.probs_flat = tf.nn.softmax(self.scores)
self.arg_max_prediction = tf.argmax(self.probs_flat, 1)
# Calculate mean cross-entropy loss
# with tf.name_scope("loss"):
# if self.loss_type == 'square_loss':
# if self.l2_reg_lambda > 0:
# self.loss = tf.nn.l2_loss(
# tf.subtract(self.input_y, self.scores)) + l2_reg_lambda * l2_loss # regulizer
# else:
# self.loss = tf.nn.l2_loss(tf.subtract(self.input_y, self.scores))
# Accuracy
# with tf.name_scope("accuracy"):
# correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
# self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")