-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlp_network.py
508 lines (431 loc) · 23 KB
/
mlp_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
"""Module defining multi-layer perceptron backpropagation neural network class"""
import json
import progressbar
import mlp_functions
import io_functions
import data_processing
class MLPNetwork(object):
"""Class to build an MLP network using stochastic gradient descent backpropagation learning"""
def __init__(self, unified_filename, results_filename):
self.results_filename = results_filename
self.__read_parameters(unified_filename)
self.__read_structure(unified_filename)
self.__read_data(unified_filename)
self.__data_preprocessing()
self.__initialise_network()
self.__backpropagation_loop()
self.average_testing_error = 0
self.__testing_loop()
if self.params['save_summary']:
self.__save_summary(results_filename)
def __read_parameters(self, parameters_filename):
with open('parameters/%s.json'
% parameters_filename) as parameters_file:
self.params = json.load(parameters_file)
def __read_structure(self, structure_filename):
self.variable_types = io_functions.read_patterns_structure('data/%s_structure.csv'
% structure_filename)
def __read_data(self, data_filename):
# read in training/validation patterns
self.patterns = io_functions.read_patterns('data/%s.csv' % data_filename, self.params)
# read in test patterns
if self.params['testing']:
self.test_patterns = io_functions.read_patterns('data/%s_test.csv'
% data_filename, self.params)
# useful variable
self.last_output = (self.params['input_dimensions'] + self.params['output_dimensions'])
def __data_preprocessing(self):
"""Method to pre-process the data"""
# split the data into training and validation patterns first
if (self.params['validating'] and
self.params['training_validation_ratio'] == 1):
self.training_patterns = self.patterns
self.validation_patterns = self.patterns
elif (self.params['validating'] and
self.params['training_validation_ratio'] < 1):
num_training_patterns = int(
len(self.patterns) * self.params['training_validation_ratio'])
self.training_patterns = self.patterns[:num_training_patterns]
self.validation_patterns = self.patterns[num_training_patterns:]
elif not self.params['validating']:
self.training_patterns = self.patterns
# standardise the data
# training patterns
training_standardiser = data_processing.Standardiser(
self.training_patterns, self.variable_types)
training_standardiser.standardise_by_type()
self.training_patterns = training_standardiser.patterns_out
# validation patterns
if self.params['validating']:
validation_standardiser = data_processing.Standardiser(
self.validation_patterns,
self.variable_types,
variables_mean=training_standardiser.variables_mean,
variables_std=training_standardiser.variables_std)
validation_standardiser.standardise_by_type()
self.validation_patterns = validation_standardiser.patterns_out
# test patterns
if self.params['testing']:
test_standardiser = data_processing.Standardiser(
self.test_patterns,
self.variable_types,
variables_mean=training_standardiser.variables_mean,
variables_std=training_standardiser.variables_std)
test_standardiser.standardise_by_type()
self.test_patterns = test_standardiser.patterns_out
self.training_standardiser = training_standardiser
# if scaling the output, adjust target training error accordingly
if self.params['output_dimensions'] == 1:
if data_processing.is_scale_type(self.variable_types[-1]):
# to add effect of scalar, multiply by scale value
target_training_error = (
self.params['target_training_error'] * float(self.variable_types[-1]))
elif self.variable_types[-1] == 'numeric':
# to add effect of numeric standardisation, divide by standard deviation
target_training_error = (
self.params['target_training_error'] /
self.training_standardiser.variables_std[-1])
else:
target_training_error = self.params['target_training_error']
else:
target_training_error = self.params['target_training_error']
self.target_training_error = target_training_error
def __initialise_network(self):
# network initialisation
# set number of neurons in each layer
# layer '0' is the input layer and defines number of inputs
neurons_l = []
neurons_l.append(self.params['input_dimensions'])
for hidden_node_index in range(len(self.params['hidden_nodes'])):
neurons_l.append(self.params['hidden_nodes'][hidden_node_index])
# this may not always be the case but is set here
neurons_l.append(self.params['output_dimensions'])
# initialise weights
weights_l_i_j = mlp_functions.initialise_weights(self.params,
neurons_l)
self.neurons_l = neurons_l
self.weights_l_i_j = weights_l_i_j
def __backpropagation_loop(self):
# backpropagation loop
# epoch count starts at one
epoch = 1
training_errors = []
repeat = True
target_training_error_reached = False
if self.params['validating']:
validation_errors = []
validation_error_best = 1000.0
training_error_best = 0.0
epoch_best = 0
# initialise progress bar for console
progress_bar = progressbar.ProgressBar(
maxval=self.params['max_epochs'],
widgets=[progressbar.Bar(
'=', '[', ']'), ' ', progressbar.Percentage()])
progress_bar.start()
while repeat:
training_error = 0.0
progress_bar.update(epoch)
for pattern in self.training_patterns:
# load pattern
input_pattern = pattern[:self.params['input_dimensions']]
# set bias 'output'
outputs_l_j = mlp_functions.initialise_bias(self.params)
# add input pattern to 'output' of layer 0
outputs_l_j[0].extend(input_pattern)
# forward pass
outputs_l_j = mlp_functions.forward_pass(
self.params, self.neurons_l, self.weights_l_i_j,
outputs_l_j)
# update training_error
output_pattern = pattern[self.params['input_dimensions']:
self.last_output]
teacher_i = []
# account for i = 0
teacher_i.append(None)
teacher_i.extend(output_pattern)
training_error = mlp_functions.update_ms_error(
self.neurons_l, training_error, teacher_i, outputs_l_j)
# calculate errors
errors_l_i = mlp_functions.calculate_errors(
self.params, self.neurons_l, self.weights_l_i_j,
teacher_i, outputs_l_j)
# update weights
self.weights_l_i_j = mlp_functions.update_weights(
self.params, self.neurons_l, self.weights_l_i_j,
errors_l_i, outputs_l_j)
# calculate rms training error
training_error = mlp_functions.calculate_rms_error(
self.params['output_function'],
training_error,
self.neurons_l[-1],
len(self.training_patterns)
)
# write out epoch training_error
training_errors.append(training_error)
# Write out weights and errors if specified
if self.params['save_network']:
if epoch % self.params['save_network_resolution'] == 0:
# append results to file
headers = (['epoch'] +
['weight_%s_%s_%s' % (l+1, i+1, j)
for l in range(len(self.weights_l_i_j[1:]))
for i in range(len(self.weights_l_i_j[l+1][1:]))
for j in range(len(self.weights_l_i_j[l+1][i+1]))] +
['error_%s_%s' % (l+1, i+1)
for l in range(len(errors_l_i[1:]))
for i in range(len(errors_l_i[l+1][1:]))])
result = [epoch]
result.extend(
[j for l in range(len(self.weights_l_i_j[1:]))
for i in range(len(self.weights_l_i_j[l+1][1:]))
for j in self.weights_l_i_j[l+1][i+1]])
result.extend(
[i for l in range(len(errors_l_i[1:]))
for i in errors_l_i[l+1][1:]])
io_functions.write_result_row(
'results/%s_weights.csv' % self.results_filename, headers, result)
if self.params['validating']:
validation_error = 0.0
for pattern in self.validation_patterns:
# load pattern
input_pattern = pattern[:self.params['input_dimensions']]
# set bias 'output'
outputs_l_j = mlp_functions.initialise_bias(self.params)
# add input pattern to 'output' of layer 0
outputs_l_j[0].extend(input_pattern)
# forward pass
outputs_l_j = mlp_functions.forward_pass(
self.params, self.neurons_l, self.weights_l_i_j,
outputs_l_j)
# update validation error
output_pattern = pattern[self.params['input_dimensions']:
self.last_output]
teacher_i = []
# account for i = 0
teacher_i.append(None)
teacher_i.extend(output_pattern)
validation_error = mlp_functions.update_ms_error(
self.neurons_l, validation_error, teacher_i,
outputs_l_j)
# calculate rms validation error
validation_error = mlp_functions.calculate_rms_error(
self.params['output_function'],
validation_error,
self.neurons_l[-1],
len(self.validation_patterns)
)
# make sure validation error is dropping
if validation_error < validation_error_best:
validation_error_best = validation_error
best_weights_l_i_j = list(self.weights_l_i_j)
epoch_best = epoch
validation_errors.append(validation_error)
# record when target training error was reached
if not target_training_error_reached:
epoch_target_training_error = epoch
if training_error < self.target_training_error:
target_training_error_reached = True
# network training halting conditions
if self.params['stop_at_target_training_error']:
if (training_error < self.target_training_error or
epoch == self.params['max_epochs']):
repeat = False
else:
if epoch == self.params['max_epochs']:
repeat = False
# finally, increment the epoch
epoch += 1
# reverse effects of standardiser on error when we only have a single output
# only modifies error with numeric standardised outputs and scaled outputs
if self.params['output_dimensions'] == 1:
if data_processing.is_scale_type(self.variable_types[-1]):
training_destandardiser_error = data_processing.Destandardiser(
[[item] for item in training_errors],
[self.variable_types[-1]])
training_destandardiser_error.destandardise_by_type()
training_errors = [
item[0] for item in training_destandardiser_error.patterns_out]
if self.params['validating']:
validation_destandardiser_error = data_processing.Destandardiser(
[[item] for item in validation_errors],
[self.variable_types[-1]])
validation_destandardiser_error.destandardise_by_type()
validation_errors = [
item[0] for item in validation_destandardiser_error.patterns_out]
elif self.variable_types[-1] == 'numeric':
training_destandardiser_error = data_processing.Destandardiser(
[[item] for item in training_errors],
[self.variable_types[-1]],
variables_mean=[0],
variables_std=[self.training_standardiser.variables_std[-1]])
training_destandardiser_error.destandardise_by_type()
training_errors = [
item[0] for item in training_destandardiser_error.patterns_out]
if self.params['validating']:
validation_destandardiser_error = data_processing.Destandardiser(
[[item] for item in validation_errors],
[self.variable_types[-1]],
variables_mean=[0],
variables_std=[self.training_standardiser.variables_std[-1]])
validation_destandardiser_error.destandardise_by_type()
validation_errors = [
item[0] for item in validation_destandardiser_error.patterns_out]
# data for summary results
self.training_errors = training_errors
self.epoch_end = epoch - 1 # subtract one as increment occurs before while loop ends
self.epoch_target_training_error = epoch_target_training_error
self.training_error_end = training_errors[-1]
if self.params['validating']:
self.best_weights_l_i_j = best_weights_l_i_j
self.validation_errors = validation_errors
self.validation_error_end = validation_errors[-1]
self.training_error_best = training_errors[epoch_best - 1] # epoch indexed from 1
self.validation_error_best = validation_errors[epoch_best - 1] # epoch indexed from 1
self.epoch_best = epoch_best
# write out detailed results if specified
if self.params['save_detailed']:
headers = (['epoch'] +
['training_error'] +
['validation_error']
)
for epoch_index, training_error in enumerate(training_errors):
result = []
if self.params['validating']:
result.append(epoch_index + 1) # start epoch count at one
result.append(training_error)
result.append(validation_errors[epoch_index])
else:
result.append(epoch_index + 1)
result.append(training_error)
io_functions.write_result_row(
'results/%s_detailed.csv' % self.results_filename, headers, result)
def __testing_loop(self):
# testing loop
if self.params['testing']:
testing_errors = []
all_outputs_l_j = []
for pattern in self.test_patterns:
testing_error = 0.0
# load pattern
input_pattern = pattern[:self.params['input_dimensions']]
# set bias 'output'
outputs_l_j = mlp_functions.initialise_bias(self.params)
# add input pattern to 'output' of layer 0
outputs_l_j[0].extend(input_pattern)
# forward pass
# use weight at lowest validation error
if self.params['validating'] and self.params['best_weights']:
outputs_l_j = mlp_functions.forward_pass(
self.params, self.neurons_l, self.best_weights_l_i_j,
outputs_l_j)
# use weight at lowest training error
else:
outputs_l_j = mlp_functions.forward_pass(
self.params, self.neurons_l, self.weights_l_i_j,
outputs_l_j)
# update test error
output_pattern = pattern[self.params['input_dimensions']:
self.last_output]
teacher_i = []
# account for i = 0
teacher_i.append(None)
teacher_i.extend(output_pattern)
testing_error = mlp_functions.update_ms_error(
self.neurons_l, testing_error, teacher_i, outputs_l_j)
# calculate rms testing error
testing_error = mlp_functions.calculate_rms_error(
self.params['output_function'],
testing_error,
self.neurons_l[-1],
1
)
all_outputs_l_j.append(outputs_l_j)
testing_errors.append(testing_error)
# remove standardisation effects from data
test_destandardiser_data = data_processing.Destandardiser(
self.test_patterns,
self.variable_types,
variables_mean=self.training_standardiser.variables_mean,
variables_std=self.training_standardiser.variables_std)
test_destandardiser_data.destandardise_by_type()
# remove standardisation effects from net outputs
test_destandardiser_net = data_processing.Destandardiser(
[item[-1][1:] for item in all_outputs_l_j],
self.variable_types[self.params['input_dimensions']:self.last_output],
variables_mean=self.training_standardiser.variables_mean[
self.params['input_dimensions']:self.last_output],
variables_std=self.training_standardiser.variables_std[
self.params['input_dimensions']:self.last_output])
test_destandardiser_net.destandardise_by_type()
# reverse effects of standardiser on error when we only have a single output
# only modifies error with numeric standardised outputs and scaled outputs
if self.params['output_dimensions'] == 1:
if data_processing.is_scale_type(self.variable_types[-1]):
test_destandardiser_error = data_processing.Destandardiser(
[[item] for item in testing_errors],
[self.variable_types[-1]])
test_destandardiser_error.destandardise_by_type()
elif self.variable_types[-1] == 'numeric':
test_destandardiser_error = data_processing.Destandardiser(
[[item] for item in testing_errors],
[self.variable_types[-1]],
variables_mean=[0],
variables_std=[self.training_standardiser.variables_std[-1]])
test_destandardiser_error.destandardise_by_type()
else:
test_destandardiser_error = None
else:
test_destandardiser_error = None
# append testing results to file
if self.params['save_testing']:
headers = (['input_%s' % i for i in range(len(input_pattern))] +
['output_%s' % i for i in range(len(output_pattern))] +
['test_output_%s' % i for i in range(len(outputs_l_j[-1][1:]))] +
['testing_error']
)
for pattern_number in range(len(test_destandardiser_data.patterns_out)):
if test_destandardiser_error is not None:
result = (test_destandardiser_data.patterns_out[pattern_number] +
test_destandardiser_net.patterns_out[pattern_number] +
test_destandardiser_error.patterns_out[pattern_number])
else:
result = (test_destandardiser_data.patterns_out[pattern_number] +
test_destandardiser_net.patterns_out[pattern_number] +
[testing_errors[pattern_number]])
io_functions.write_result_row(
'results/%s_testing.csv' % self.results_filename, headers, result)
# calculate average testing error
if test_destandardiser_error is not None:
self.average_testing_error = (
sum([item[0] for item in test_destandardiser_error.patterns_out]) /
float(len(testing_errors)))
self.testing_errors = [item[0] for item in test_destandardiser_error.patterns_out]
else:
self.average_testing_error = sum(testing_errors)/float(len(testing_errors))
self.testing_errors = testing_errors
def __save_summary(self, results_filename):
# save some data
headers = ['weight_init_mean', 'weight_init_range',
'random_numbers_seed', 'hidden_layers_function',
'output_function', 'training_rate',
'hidden_nodes', 'epoch_end', 'training_error_end',
'epoch_target_training_error', 'average_testing_error',
'validation_error_end', 'epoch_best',
'training_error_best', 'validation_error_best'
]
result = []
result.append(self.params['weight_init_mean'])
result.append(self.params['weight_init_range'])
result.append(self.params['random_numbers_seed'])
result.append(self.params['hidden_layers_function'])
result.append(self.params['output_function'])
result.append(self.params['training_rate'])
result.append(self.params['hidden_nodes'])
result.extend([self.epoch_end, self.training_error_end,
self.epoch_target_training_error, self.average_testing_error])
if self.params['validating']:
result.extend([self.validation_error_end, self.epoch_best,
self.training_error_best, self.validation_error_best])
io_functions.write_result_row(
'results/%s.csv' % results_filename, headers, result)