-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path1_DS_delays_analytics.R
202 lines (163 loc) · 5.22 KB
/
1_DS_delays_analytics.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#install.packages("geosphere")
#NOTE: In CDP find the HMS warehouse directory and external table directory by browsing to:
# Environment -> <env name> -> Data Lake Cluster -> Cloud Storage
# copy and paste the external location to the config setting below.
#Temporary workaround for MLX-975
#In utils/hive-site.xml edit hive.metastore.warehouse.dir and hive.metastore.warehouse.external.dir based on settings in CDP Data Lake -> Cloud Storage
if(!file.exists('/etc/hadoop/conf/hive-site.xml')){
file.copy('/home/cdsw/utils/hive-site.xml', '/etc/hadoop/conf/hive-site.xml')
}
### Load libraries
library(ggplot2)
library(maps)
library(geosphere)
library (DBI)
library(sparklyr)
library(dplyr)
## Connect to Spark. Check spark_defaults.conf for the correct
spark_home_set("/etc/spark/")
config <- spark_config()
#config$spark.hadoop.fs.s3a.aws.credentials.provider <- "org.apache.hadoop.fs.s3a.AnonymousAWSCredentialsProvider"
config$spark.executor.memory <- "16g"
config$spark.executor.cores <- "4"
config$spark.driver.memory <- "6g"
config$spark.executor.instances <- "5"
config$spark.dynamicAllocation.enabled <- "false"
#config$spark.hadoop.fs.s3a.metadatastore.impl <- "org.apache.hadoop.fs.s3a.s3guard.NullMetadataStore"
#config$spark.sql.catalogImplementation <- "in-memory"
config$spark.yarn.access.hadoopFileSystems <- "s3a://ml-field/demo/flight-analysis/"
sc <- spark_connect(master = "yarn-client", config=config)
## Read in the flight data from S3
s3_link_all <-
"s3a://ml-field/demo/flight-analysis/data/airlines_csv/*"
cols = list(
FL_DATE = "date",
OP_CARRIER = "character",
OP_CARRIER_FL_NUM = "character",
ORIGIN = "character",
DEST = "character",
CRS_DEP_TIME = "character",
DEP_TIME = "character",
DEP_DELAY = "double",
TAXI_OUT = "double",
WHEELS_OFF = "character",
WHEELS_ON = "character",
TAXI_IN = "double",
CRS_ARR_TIME = "character",
ARR_TIME = "character",
ARR_DELAY = "double",
CANCELLED = "double",
CANCELLATION_CODE = "character",
DIVERTED = "double",
CRS_ELAPSED_TIME = "double",
ACTUAL_ELAPSED_TIME = "double",
AIR_TIME = "double",
DISTANCE = "double",
CARRIER_DELAY = "double",
WEATHER_DELAY = "double",
NAS_DELAY = "double",
SECURITY_DELAY = "double",
LATE_AIRCRAFT_DELAY = "double",
'Unnamed: 27' = "logical"
)
# Load all the flight data
spark_read_csv(
sc,
name = "flight_data",
path = s3_link_all,
infer_schema = FALSE,
columns = cols,
header = TRUE
)
airlines <- tbl(sc, "flight_data")
#Load all the airport data
spark_read_csv(
sc,
name = "airports",
path = "s3a://ml-field/demo/flight-analysis/data/airports_orig.csv",
infer_schema = TRUE,
header = TRUE
)
airports <- tbl(sc, "airports")
airports <- airports %>% collect
## This is important, you can run spark.sql functions inside R
# Add year and month fields to the flight data
airlines <-
airlines %>%
mutate(year = year(FL_DATE), month = month(FL_DATE))
# Plot number of flights per year
airline_counts_by_year <-
airlines %>%
group_by(year) %>%
summarise(count = n()) %>%
collect()
g <- ggplot(airline_counts_by_year, aes(x = year, y = count))
g <- g + geom_line(colour = "magenta",
linetype = 1,
size = 0.8)
g <- g + xlab("Year")
g <- g + ylab("Flight number")
g <- g + ggtitle("US flights")
plot(g)
# #See flight number between 2010 and 2013
#Next, let’s dig it for the 2002 data. Let’s plot flight number betwewen 2001 and 2003.
airline_counts_by_month <-
airlines %>% filter(year >= 2010 &
year <= 2013) %>% group_by(year, month) %>% summarise(count = n()) %>% collect
g <- ggplot(airline_counts_by_month,
aes(x = as.Date(
sprintf(
"%d-%02d-01",
airline_counts_by_month$year,
airline_counts_by_month$month
)
), y = count))
g <- g + geom_line(colour = "magenta",
linetype = 1,
size = 0.8)
g <- g + xlab("Year/Month")
g <- g + ylab("Flight number")
g <- g + ggtitle("US flights")
plot(g)
# Next, we will summarize the data by carrier, origin and dest.
flights <-
airlines %>%
group_by(year, OP_CARRIER, ORIGIN, DEST) %>%
summarise(count = n())
flights
airports <- tbl(sc, "airports") %>% collect
#Now we extract AA’s flight in 2010.
flights_aa <-
flights %>% filter(year == 2010) %>% filter(OP_CARRIER == "AA") %>% arrange(count) %>% collect
flights_aa
#Let’s plot the flight number of AA in 2007.
# draw map with line of AA
xlim <- c(-171.738281,-56.601563)
ylim <- c(12.039321, 71.856229)
# Color settings
pal <- colorRampPalette(c("#333333", "white", "#1292db"))
colors <- pal(100)
map(
"world",
col = "#6B6363",
fill = TRUE,
bg = "#000000",
lwd = 0.05,
xlim = xlim,
ylim = ylim
)
maxcnt <- max(flights_aa$count)
for (j in 1:length(flights_aa$OP_CARRIER)) {
air1 <- airports[airports$iata == flights_aa[j, ]$ORIGIN, ]
air2 <- airports[airports$iata == flights_aa[j, ]$DEST, ]
inter <-
gcIntermediate(
c(air1[1, ]$long, air1[1, ]$lat),
c(air2[1, ]$long, air2[1, ]$lat),
n = 100,
addStartEnd = TRUE
)
colindex <-
round((flights_aa[j, ]$count / maxcnt) * length(colors))
lines(inter, col = colors[colindex], lwd = 0.8)
}