-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy pathfused_kl_div.py
321 lines (276 loc) · 9.58 KB
/
fused_kl_div.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# -*- coding: utf-8 -*-
from typing import Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import triton
import triton.language as tl
from fla.utils import contiguous
# The hard limit of TRITON_MAX_TENSOR_NUMEL is 1048576
# https://github.com/triton-lang/triton/blob/ba42a5c68fd0505f8c42f4202d53be0f8d9a5fe0/python/triton/language/core.py#L19
# However, setting limit as 65536 as in LayerNorm tutorial is faster because of less register spilling
# The optimal maximum block size depends on your hardware, your kernel, and your dtype
MAX_FUSED_SIZE = 65536 // 2
@triton.jit
def kl_div_kernel(
logits,
target_logits,
loss,
s_logits,
s_loss,
reduction: tl.constexpr,
N: tl.constexpr,
V: tl.constexpr,
BV: tl.constexpr
):
# https://github.com/triton-lang/triton/issues/1058
# If N*V is too large, i_n * stride will overflow out of int32, so we convert to int64
i_n = tl.program_id(0).to(tl.int64)
logits += i_n * s_logits
target_logits += i_n * s_logits
# m is the max value. use the notation from the paper
sm, tm = float('-inf'), float('-inf')
# d is the sum. use the notation from the paper
sd, td = 0.0, 0.0
NV = tl.cdiv(V, BV)
for iv in range(0, NV):
o_x = iv * BV + tl.arange(0, BV)
# for student
b_sl = tl.load(logits + o_x, mask=o_x < V, other=float('-inf'))
b_sm = tl.max(b_sl)
m_new = tl.maximum(sm, b_sm)
sd = sd * tl.exp(sm - m_new) + tl.sum(tl.exp(b_sl - m_new))
sm = m_new
# for teacher
b_tl = tl.load(target_logits + o_x, mask=o_x < V, other=float('-inf'))
b_tm = tl.max(b_tl)
m_new = tl.maximum(tm, b_tm)
td = td * tl.exp(tm - m_new) + tl.sum(tl.exp(b_tl - m_new))
tm = m_new
b_loss = 0.
# KL(y_true || y) = exp(y_true) * (log(y_true) - log(y))
for iv in range(0, NV):
o_x = iv * BV + tl.arange(0, BV)
b_sl = tl.load(logits + o_x, mask=o_x < V, other=float('-inf'))
b_tl = tl.load(target_logits + o_x, mask=o_x < V, other=float('-inf'))
b_sp_log = b_sl - sm - tl.log(sd)
b_tp_log = b_tl - tm - tl.log(td)
b_sp = tl.exp(b_sp_log)
b_tp = tl.exp(b_tp_log)
b_kl = tl.where(o_x < V, b_tp * (b_tp_log - b_sp_log), 0)
b_dl = -b_tp + b_sp
b_loss += tl.sum(b_kl)
if reduction == 'batchmean':
b_dl = b_dl / N
tl.store(logits + o_x, b_dl, mask=o_x < V)
# Normalize the loss by the number of elements if reduction is 'batchmean'
if reduction == 'batchmean':
b_loss = b_loss / N
tl.store(loss + i_n * s_loss, b_loss)
@triton.jit
def elementwise_mul_kernel(
x,
g,
N: tl.constexpr,
B: tl.constexpr
):
"""
This function multiplies each element of the tensor pointed by x with the value pointed by g.
The multiplication is performed in-place on the tensor pointed by x.
Parameters:
x:
Pointer to the input tensor.
g:
Pointer to the gradient output value.
N (int):
The number of columns in the input tensor.
B (int):
The block size for Triton operations.
"""
# Get the program ID and convert it to int64 to avoid overflow
i_x = tl.program_id(0).to(tl.int64)
o_x = i_x * B + tl.arange(0, B)
# Load the gradient output value
b_g = tl.load(g)
b_x = tl.load(x + o_x, mask=o_x < N)
tl.store(x + o_x, b_x * b_g, mask=o_x < N)
def fused_kl_div_forward(
x: torch.Tensor,
target_x: torch.Tensor,
weight: torch.Tensor,
target_weight: torch.Tensor,
reduction: str = 'batchmean'
):
device = x.device
# ideally, we would like to achieve the same memory consumption as [N, H],
# so the expected chunk size should be:
# NC = ceil(V / H)
# C = ceil(N / NC)
# for ex: N = 4096*4, V = 32000, H = 4096 ==> NC = 8, C = ceil(N / NC) = 2048
N, H, V = *x.shape, weight.shape[0]
BV = min(MAX_FUSED_SIZE, triton.next_power_of_2(V))
# TODO: in real cases, we may need to limit the number of chunks NC to
# ensure the precisions of accumulated gradients
NC = min(8, triton.cdiv(V, H))
C = triton.next_power_of_2(triton.cdiv(N, NC))
NC = triton.cdiv(N, C)
dx = torch.zeros_like(x, device=device)
dw = torch.zeros_like(weight, device=device) if weight is not None else None
# we use fp32 for loss accumulator
loss = torch.zeros(N, dtype=torch.float32, device=device)
for ic in range(NC):
start, end = ic * C, min((ic + 1) * C, N)
# [C, N]
c_sx = x[start:end]
c_tx = target_x[start:end]
# when doing matmul, use the original precision
# [C, V]
c_sl = F.linear(c_sx, weight)
c_tl = F.linear(c_tx, target_weight)
# unreduced loss
c_loss = loss[start:end]
# Here we calculate the gradient of c_sx in place so we can save memory.
kl_div_kernel[(c_sx.shape[0],)](
logits=c_sl,
target_logits=c_tl,
loss=c_loss,
s_logits=c_sl.stride(-2),
s_loss=c_loss.stride(-1),
reduction=reduction,
N=N,
V=V,
BV=BV,
num_warps=32
)
# gradient of logits is computed in-place by the above triton kernel and is of shape: C x V
# thus dx[start: end] should be of shape: C x H
# additionally, since we are chunking the inputs, observe that the loss and gradients are calculated only
# on `n_non_ignore` tokens. However, the gradient of the input should be calculated for all tokens.
# Thus, we need an additional scaling factor of (n_non_ignore/total) to scale the gradients.
# [C, H]
dx[start:end] = torch.mm(c_sl, weight)
if weight is not None:
torch.addmm(input=dw, mat1=c_sl.t(), mat2=c_sx, out=dw)
loss = loss.sum()
return loss, dx, dw
def fused_kl_div_backward(
do: torch.Tensor,
dx: torch.Tensor,
dw: torch.Tensor
):
# If cross entropy is the last layer, do is 1.0. Skip the mul to save time
if torch.ne(do, torch.tensor(1.0, device=do.device)):
# We use a Triton kernel instead of a PyTorch operation because modifying inputs in-place
# for gradient storage and backward multiple times causes anomalies with PyTorch but not with Triton.
N, H = dx.shape
B = min(MAX_FUSED_SIZE, triton.next_power_of_2(H))
elementwise_mul_kernel[(triton.cdiv(N * H, B),)](
x=dx,
g=do,
N=N*H,
B=B,
num_warps=32,
)
# handle dw
if dw is not None:
V, H = dw.shape
elementwise_mul_kernel[(triton.cdiv(V * H, B),)](
x=dw,
g=do,
N=V*H,
B=B,
num_warps=32,
)
return dx, dw
class FusedKLDivLossFunction(torch.autograd.Function):
@staticmethod
@contiguous
def forward(
ctx,
x: torch.Tensor,
target_x: torch.Tensor,
weight: torch.Tensor,
target_weight: torch.Tensor,
reduction: str
):
loss, dx, dw = fused_kl_div_forward(
x=x,
target_x=target_x,
weight=weight,
target_weight=target_weight,
reduction=reduction
)
ctx.save_for_backward(dx, dw)
return loss
@staticmethod
@contiguous
def backward(ctx, do):
dx, dw = ctx.saved_tensors
dx, dw = fused_kl_div_backward(do, dx, dw)
return dx, None, dw, None, None
def fused_kl_div_loss(
x: torch.Tensor,
target_x: torch.Tensor,
weight: torch.Tensor,
target_weight: torch.Tensor,
reduction: str = 'batchmean'
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
x (torch.Tensor): [batch_size * seq_len, hidden_size]
target_x (torch.Tensor): [batch_size * seq_len, hidden_size]
weight (torch.Tensor): [vocab_size, hidden_size]
where `vocab_size` is the number of classes.
target_weight (torch.Tensor): [vocab_size, hidden_size]
where `vocab_size` is the number of classes.
reduction:
Specifies the reduction to apply to the output: 'batchmean'. Default: 'batchmean'.
Returns:
loss
"""
return FusedKLDivLossFunction.apply(
x,
target_x,
weight,
target_weight,
reduction
)
class FusedKLDivLoss(nn.Module):
def __init__(
self,
reduction: str = 'batchmean'
):
"""
Args:
reduction:
Specifies the reduction to apply to the output: 'batchmean'. Default: 'batchmean'.
"""
super().__init__()
assert reduction in ['batchmean'], f"reduction: {reduction} is not supported"
self.reduction = reduction
def forward(
self,
x: torch.Tensor,
target_x: torch.Tensor,
weight: torch.Tensor,
target_weight: torch.Tensor
):
"""
Args:
x (torch.Tensor): [batch_size * seq_len, hidden_size]
target_x (torch.Tensor): [batch_size * seq_len, hidden_size]
weight (torch.Tensor): [vocab_size, hidden_size]
where `vocab_size` is the number of classes.
target_weight (torch.Tensor): [vocab_size, hidden_size]
where `vocab_size` is the number of classes.
Returns:
loss
"""
loss = fused_kl_div_loss(
x=x,
target_x=target_x,
weight=weight,
target_weight=target_weight,
reduction=self.reduction
)
return loss