-
Notifications
You must be signed in to change notification settings - Fork 1
/
tweetnacl.c
170 lines (156 loc) · 2.79 KB
/
tweetnacl.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
// - minimized to only contain crypto_scalarmult / crypto_scalarmult_base and
// dependencies
// - UB fixed in car25519, see [1]
//
// otherwise identical to TweetNaCl[2] version 20140427
//
// [1] Schwabe, Peter, et al. "A Coq proof of the correctness of X25519 in TweetNaCl." IACR Cryptol. ePrint Arch. 2021 (2021): 428.
// [2] https://tweetnacl.cr.yp.to/
#include "tweetnacl.h"
#define FOR(i,n) for (i = 0;i < n;++i)
#define sv static void
typedef unsigned char u8;
typedef unsigned long u32;
typedef unsigned long long u64;
typedef long long i64;
typedef i64 gf[16];
static const u8
_9[32] = {9};
static const gf
_121665 = {0xDB41,1};
sv car25519(gf o)
{
int i;
FOR(i,16) {
o[(i+1)%16]+=(i<15?1:38)*(o[i]>>16);
o[i]&=0xffff;
}
}
sv sel25519(gf p,gf q,int b)
{
i64 t,i,c=~(b-1);
FOR(i,16) {
t= c&(p[i]^q[i]);
p[i]^=t;
q[i]^=t;
}
}
sv pack25519(u8 *o,const gf n)
{
int i,j,b;
gf m,t;
FOR(i,16) t[i]=n[i];
car25519(t);
car25519(t);
car25519(t);
FOR(j,2) {
m[0]=t[0]-0xffed;
for(i=1;i<15;i++) {
m[i]=t[i]-0xffff-((m[i-1]>>16)&1);
m[i-1]&=0xffff;
}
m[15]=t[15]-0x7fff-((m[14]>>16)&1);
b=(m[15]>>16)&1;
m[14]&=0xffff;
sel25519(t,m,1-b);
}
FOR(i,16) {
o[2*i]=t[i]&0xff;
o[2*i+1]=t[i]>>8;
}
}
sv unpack25519(gf o, const u8 *n)
{
int i;
FOR(i,16) o[i]=n[2*i]+((i64)n[2*i+1]<<8);
o[15]&=0x7fff;
}
sv A(gf o,const gf a,const gf b)
{
int i;
FOR(i,16) o[i]=a[i]+b[i];
}
sv Z(gf o,const gf a,const gf b)
{
int i;
FOR(i,16) o[i]=a[i]-b[i];
}
sv M(gf o,const gf a,const gf b)
{
i64 i,j,t[31];
FOR(i,31) t[i]=0;
FOR(i,16) FOR(j,16) t[i+j]+=a[i]*b[j];
FOR(i,15) t[i]+=38*t[i+16];
FOR(i,16) o[i]=t[i];
car25519(o);
car25519(o);
}
sv S(gf o,const gf a)
{
M(o,a,a);
}
sv inv25519(gf o,const gf i)
{
gf c;
int a;
FOR(a,16) c[a]=i[a];
for(a=253;a>=0;a--) {
S(c,c);
if(a!=2&&a!=4) M(c,c,i);
}
FOR(a,16) o[a]=c[a];
}
int crypto_scalarmult(u8 *q,const u8 *n,const u8 *p)
{
u8 z[32];
i64 x[80],r,i;
gf a,b,c,d,e,f;
FOR(i,31) z[i]=n[i];
z[31]=(n[31]&127)|64;
z[0]&=248;
unpack25519(x,p);
FOR(i,16) {
b[i]=x[i];
d[i]=a[i]=c[i]=0;
}
a[0]=d[0]=1;
for(i=254;i>=0;--i) {
r=(z[i>>3]>>(i&7))&1;
sel25519(a,b,r);
sel25519(c,d,r);
A(e,a,c);
Z(a,a,c);
A(c,b,d);
Z(b,b,d);
S(d,e);
S(f,a);
M(a,c,a);
M(c,b,e);
A(e,a,c);
Z(a,a,c);
S(b,a);
Z(c,d,f);
M(a,c,_121665);
A(a,a,d);
M(c,c,a);
M(a,d,f);
M(d,b,x);
S(b,e);
sel25519(a,b,r);
sel25519(c,d,r);
}
FOR(i,16) {
x[i+16]=a[i];
x[i+32]=c[i];
x[i+48]=b[i];
x[i+64]=d[i];
}
inv25519(x+32,x+32);
M(x+16,x+16,x+32);
pack25519(q,x+16);
return 0;
}
int crypto_scalarmult_base(u8 *q,const u8 *n)
{
return crypto_scalarmult(q,n,_9);
}